如圖,拋物線y=ax2-2ax+c(a≠0)交x軸于A、B兩點,A點坐標(biāo)為(3,0),與y軸交于點C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點G.
(1)求拋物線的解析式;
(2)拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標(biāo)為m,請用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.
【答案】分析:(1)將A(3,0),C(0,4)代入y=ax2-2ax+c,運用待定系數(shù)法即可求出拋物線的解析式;
(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,進(jìn)而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標(biāo),即可得到PM的長;
(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應(yīng),則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.
解答:解:(1)∵拋物線y=ax2-2ax+c(a≠0)經(jīng)過點A(3,0),點C(0,4),
,解得
∴拋物線的解析式為y=-x2+x+4;

(2)設(shè)直線AC的解析式為y=kx+b,
∵A(3,0),點C(0,4),
,解得,
∴直線AC的解析式為y=-x+4.
∵點M的橫坐標(biāo)為m,點M在AC上,
∴M點的坐標(biāo)為(m,-m+4),
∵點P的橫坐標(biāo)為m,點P在拋物線y=-x2+x+4上,
∴點P的坐標(biāo)為(m,-m2+m+4),
∴PM=PE-ME=(-m2+m+4)-(-m+4)=-m2+4m,
即PM=-m2+4m(0<m<3);

(3)在(2)的條件下,連結(jié)PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:
由題意,可得AE=3-m,EM=-m+4,CF=m,PF=-m2+m+4-4=-m2+m.
若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:
①若△PFC∽△AEM,則PF:AE=FC:EM,
即(-m2+m):(3-m)=m:(-m+4),
∵m≠0且m≠3,
∴m=
∵△PFC∽△AEM,∴∠PCF=∠AME,
∵∠AME=∠CMF,∴∠PCF=∠CMF.
在直角△CMF中,∵∠CMF+∠MCF=90°,
∴∠PCF+∠MCF=90°,即∠PCM=90°,
∴△PCM為直角三角形;
②若△CFP∽△AEM,則CF:AE=PF:EM,
即m:(3-m)=(-m2+m):(-m+4),
∵m≠0且m≠3,
∴m=1.
∵△CFP∽△AEM,∴∠CPF=∠AME,
∵∠AME=∠CMF,∴∠CPF=∠CMF.
∴CP=CM,
∴△PCM為等腰三角形.
綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.
點評:此題是二次函數(shù)的綜合題,其中涉及到運用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,矩形的性質(zhì),相似三角形的判定和性質(zhì),直角三角形、等腰三角形的判定,難度適中.要注意的是當(dāng)相似三角形的對應(yīng)邊和對應(yīng)角不明確時,要分類討論,以免漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點P(-
1
2
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標(biāo),寫出一條正確的結(jié)論,并通過計算說明;
(3)設(shè)A,B兩點的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當(dāng)x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標(biāo)原點,拋物線上一點C的橫坐標(biāo)為1.
(1)求A,B兩點的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點的一個動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標(biāo);
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時,求點M、N的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案