【題目】如圖,將△ABC繞頂點C逆時針旋轉得到△A′B′C′,且點B剛好落在A′B′上,若∠A=25°,∠BCA′=45°,則∠A′BA等于(  )

A.30°
B.35°
C.40°
D.45°

【答案】C
【解析】解:∵∠A=25°,∠BCA′=45°,
∴∠BCA′+∠A′=∠B′BC=45°+25°=70°,
∵CB=CB′,
∴∠BB′C=∠B′BC=70°,
∴∠B′CB=40°,
∴∠ACA′=40°,
∵∠A=∠A′,∠A′DB=∠ADC,
∴∠ACA′=∠A′BA=40°.
故選:C.

首先根據(jù)旋轉的性質(zhì)以及三角形外角的性質(zhì)得出∠BCA′+∠A′=∠B′BC=45°+25°=70°,以及∠BB′C=∠B′BC=70°,再利用三角形內(nèi)角和定理得出∠ACA′=∠A′BA=40°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一副“弦圖”,后人稱其為“趙爽弦圖”如圖①是我國古代著名的“趙爽弦圖”的示意圖,它是由四個全等的直角三角形圍成的.若較短的直角邊BC=5,將四個直角三角形中較長的直角邊分別向外延長一倍,得到圖②所示的“數(shù)學風車”,若△BCD的周長是30,則這個風車的外圍周長是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)請猜想1+3+5+7+9+…+19=

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)試計算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)用根長度相同的火柴棒,按如圖①擺放時可擺成個正方形按如圖②擺放時可擺成個正方形

(1)如圖①,當___________,如圖②,當,________________;

(2)之間有何數(shù)量關系請你寫出來并說明理由;

(3)現(xiàn)有61根火柴棒,現(xiàn)用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀。請你直接寫出一種擺放方法,并通過計算驗證你的結論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓分別與AB、AC邊相切于D、E兩點,連接OD.已知BD=2,AD=3.求:
(1)tanC;
(2)圖中兩部分陰影面積的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)從2011年開始,組織全民健身活動,結合社區(qū)條件,開展了廣場舞、太極拳、羽毛球和跑步四個活動項目,現(xiàn)將參加項目活動總人數(shù)進行統(tǒng)計,并繪制成每年參加總人數(shù)折線統(tǒng)計圖和2015年各活動項目參與人數(shù)的扇形統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列題

(1)2015年比2011年增加 人;

(2)請根據(jù)扇形統(tǒng)計圖求出2015年參與跑步項目的人數(shù);

(3)組織者預計2016年參與人員人數(shù)將比2015年的人數(shù)增加15%,名各活動項目參與人數(shù)的百分比與2016年相同,請根據(jù)以上統(tǒng)計結果,估計2016年參加太極拳的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,下面說法正確的個數(shù)是( 。﹤.
①若O是△ABC的外心,∠A=50°,則∠BOC=100°;
②若O是△ABC的內(nèi)心,∠A=50°,則∠BOC=115°;
③若BC=6,AB+AC=10,則△ABC的面積的最大值是12;
④△ABC的面積是12,周長是16,則其內(nèi)切圓的半徑是1.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一名足球守門員練習折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10

(1)守門員最后是否回到了球門線的位置?

(2)在練習過程中,守門員離開球門最遠距離是多少米?

(3)守門員全部練習結束后,他共跑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AC=60 cm,A=60°,點D從點C出發(fā)沿CA方向以4 cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2 cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D,E運動的時間是t(0<t≤15).過點DDFBC于點F,連接DE,EF。

(1)求證:AE=DF;

(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值;如果不能,請說明理由;

(3)t為何值時,DEF為直角三角形?請說明理由.

查看答案和解析>>

同步練習冊答案