已知平行四邊形ABCD,點F為線段BC上一點(端點B,C除外),連接AF,AC,連接DF,并延長DF交AB的延長線于點E,連接CE.
(1)當(dāng)F為BC的中點時,求證△EFC與△ABF的面積相等;
(2)當(dāng)F為BC上任意一點時,△EFC與△ABF的面積還相等嗎?說明理由.

解:(1)證明:∵點F為BC的中點,
∴BF=CF=BC,
又∵BF∥AD,
∴BE=AB,
∴A,E兩點到BC的距離相等,都為ABsin∠ABC,

則S△ABF=•BF×ABsin∠ABC,
S△EFC=•FC•h1,
∵h(yuǎn)1=ABsin∠ABC,BF=CF,
∴S△ABF=S△EFC;

(2)當(dāng)F為BC上任意一點時,
設(shè)BF=x,則FC=BC-x,
∵四邊形ABCD是平行四邊形,
=,
=
∴BE=,
在△EFC中,F(xiàn)C邊上的高h(yuǎn)1=BEsin∠ABC,
∴h1=sin∠ABC,
∴S△EFC=FC×h1=(BC-x)×sin∠ABC=ABxsin∠ABC,
又在△ABF中,BF邊上的高h(yuǎn)2=ABsin∠ABC,
∴S△ABF=ABxsin∠ABC,
∴S△ABF=S△EFC
分析:(1)首先表示出S△EFC與S△ABF,面積,再利用△EFC與△ABF的面積相等且當(dāng)F為BC的中點,所以必須證明h=h′,而h=ABsin∠ABC,h′=EBsin∠ABC,所以證明方向轉(zhuǎn)化為求證EB=AB,而EB=CD,可利用證△EBF≌△DCF來解答,因此便可求證所求;
(2)由于△ABC和△CDE為等底等高三角形,所以S△ABC=S△CDE,又因為△ACF和△CDF同底等高,所以S△AFC=S△CDF.即可得出S△ABC-S△AFC=S△CDE-S△CDF,即S△ABF=S△EFC
點評:此題考查了平行四邊形的基本性質(zhì)和三角形全等的判定以及三角形面積求法等知識,正確的表示出各三角形的面積是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出∠ABC的平分線BE,交AD的延長線于點E,交DC于點F(保留作圖痕跡,不寫作法);
(2)在第(1)題的條件下,求證:△ABE是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、已知平行四邊形ABCD的周長為32cm,△ABC的周長為20cm,則AC=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD,AD=a,AB=b,∠ABC=α.點F為線段BC上一點(端點B,C除外),連接AF,AC精英家教網(wǎng),連接DF,并延長DF交AB的延長線于點E,連接CE.
(1)當(dāng)F為BC的中點時,求證:△EFC與△ABF的面積相等;
(2)當(dāng)F為BC上任意一點時,△EFC與△ABF的面積還相等嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

49、如圖,已知平行四邊形ABCD,AE平分∠DAB交DC于E,BF平分∠ABC交DC于F,DC=6cm,AD=2cm,求DE、EF、FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD中,對角線BD平分∠ABC,求證:四邊形ABCD是菱形.

查看答案和解析>>

同步練習(xí)冊答案