直線與x、y軸分別交于點(diǎn)A、C.拋物線的圖象經(jīng)過(guò)A、C和點(diǎn)B(1,0).

(1)求拋物線的解析式;

(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AC的距離DE最大時(shí),求出點(diǎn)D的坐標(biāo),并求出最大距離是多少?

 

【答案】

解:(1)在直線解析式中,令x=0,得y=﹣2;令y=0,得x=4,

∴A(4,0),C(0,﹣2)。

設(shè)拋物線的解析式為y=ax2+bx+c,

∵點(diǎn)A(4,0),B(1,0),C(0,﹣2)在拋物線上,

,解得

∴拋物線的解析式為:。

(2)設(shè)點(diǎn)D坐標(biāo)為(x,y),。

在Rt△AOC中,OA=4,OC=2,由勾股定理得:AC=。

如圖,連接CD、AD,過(guò)點(diǎn)D作DF⊥y軸于點(diǎn)F,過(guò)點(diǎn)A作AG⊥FD交FD的延長(zhǎng)線于點(diǎn)G,

則FD=x,DG=4﹣x,OF=AG=y,F(xiàn)C=y+2。

SACD=S梯形AGFC﹣SCDF﹣SADG

=(AG+FC)•FG﹣FC•FD﹣DG•AG

=(y+y+2)×4﹣(y+2)•x﹣(4﹣x)•y

=2y﹣x﹣4

代入得:SACD=2y﹣x﹣4=﹣x2+4x=﹣(x﹣2)2+4。

∴當(dāng)x=2時(shí),△ACD的面積最大,最大值為4。

當(dāng)x=2時(shí),y=1,∴D(2,1)。

∵SACD=AC•DE,AC=

∴當(dāng)△ACD的面積最大時(shí),高DE最大,

則DE的最大值為:

∴當(dāng)D與直線AC的距離DE最大時(shí),點(diǎn)D的坐標(biāo)為(2,1),最大距離為。

【解析】

試題分析:(1)首先求出點(diǎn)A,點(diǎn)C的坐標(biāo);然后利用待定系數(shù)法求出拋物線的解析式。

(2)AC為定值,當(dāng)DE最大時(shí),△ACD的面積最大,因此只需要求出△ACD面積的最大值即可。如圖所示,作輔助線,利用SACD=S梯形AGFC﹣SCDF﹣SADG求出SACD的表達(dá)式,然后利用二次函數(shù)的性質(zhì)求出最大值,并進(jìn)而求出點(diǎn)D的坐標(biāo)和DE的最大值。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線數(shù)學(xué)公式與x、y軸分別交于點(diǎn)A、B,以AB為直徑的⊙M過(guò)原點(diǎn)O,垂直于x軸的直線MP與⊙M的下半圓交于點(diǎn)P.
(1)求點(diǎn)B關(guān)于直線MP對(duì)稱的點(diǎn)C的坐標(biāo); 
(2)若直線MP的解析式是x=6,求過(guò)P、B、C三點(diǎn)的拋物線的解析式; 
(3)拋物線上是否存在點(diǎn)E,使∠EOP=45°?若存在,求出坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線數(shù)學(xué)公式與x,y軸分別交于A、B兩點(diǎn),M是OB上一點(diǎn),將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線AM的解析式;
(3)設(shè)直線l:x=t(-4<t<6)與直線AM的交點(diǎn)為P,與過(guò)A、B、C三點(diǎn)的拋物線交于點(diǎn)Q,求PQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆浙江省四校九年級(jí)聯(lián)考數(shù)學(xué)卷(帶解析) 題型:填空題

如圖:直線x,y軸分別交于A,B,CAB的中點(diǎn),點(diǎn)PA出發(fā)以每秒1個(gè)單位的速度沿射線AO方向運(yùn)動(dòng),將點(diǎn)CP順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D,作DEx軸,垂足為E,連接PC,PD,PB.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤16),當(dāng)以P,D,E為頂點(diǎn)的三角形與△BOP相似時(shí),寫(xiě)出所有t的值:   ▲    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年河南省洛陽(yáng)市五十五中九年級(jí)(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與x,y軸分別交于A、B兩點(diǎn),M是OB上一點(diǎn),將△ABM沿AM折疊,點(diǎn)B恰好落在x軸上的點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線AM的解析式;
(3)設(shè)直線l:x=t(-4<t<6)與直線AM的交點(diǎn)為P,與過(guò)A、B、C三點(diǎn)的拋物線交于點(diǎn)Q,求PQ的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省金四校九年級(jí)聯(lián)考數(shù)學(xué)卷(解析版) 題型:填空題

如圖:直線x,y軸分別交于A,BCAB的中點(diǎn),點(diǎn)PA出發(fā)以每秒1個(gè)單位的速度沿射線AO方向運(yùn)動(dòng),將點(diǎn)CP順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D,作DEx軸,垂足為E,連接PC,PD,PB.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(0≤t≤16),當(dāng)以P,D,E為頂點(diǎn)的三角形與△BOP相似時(shí),寫(xiě)出所有t的值:    ▲    

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案