根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應值,可判斷該二次函數(shù)的圖像與軸(    ).

...
-1
0
1
2
...

...
-1

-2

...
A. 只有一個交點                        B. 有兩個交點,且它們分別在軸兩側
C. 有兩個交點,且它們均在軸同側       D. 無交點
B

試題分析:根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.
由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上
則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側
故選B.
點評:本題屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是(  )
A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)(a≠0),列表如下:
x
……


0

1

2
……
y
……
2

0

0

2
……
(1)根據(jù)表格所提供的數(shù)據(jù),請你寫出頂點坐標___________,對稱軸__________。
(2)求出二次函數(shù)解析式。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線過點A(0,4)和C(8,0),P(t,0)是軸正半軸上的一個動點,M是線段AP的中點,將線段MP繞點P順時針旋轉90°得線段PB.過B作軸的垂線、過點A作軸的垂線,兩直線相交于點D.

(1)求b、c的值;
(2)當t為何值時,點D落在拋物線上;
(3)是否存在,使得以A、B、D為頂點的三角形與△AOP相似?若存在,求此時的值;若不存在,請說明理由;
(4)連結AC,在點P運動過程中,若以PB為直徑的圓與直線AC相切,直接寫出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

銷售甲、乙兩種商品所得利潤分別為y1(萬元)和y2(萬元),它們與投入資金u的關系式為y1,y2u.如果將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲商品的投資為x(萬元).
(1)求經(jīng)營甲、乙兩種商品的總利潤y(萬元)與x的函數(shù)關系式,并直接寫出自變量x的取值范圍;
(2)設=t,試寫出y關于t的函數(shù)關系式,并求出經(jīng)營甲、乙兩種商品各投入多少萬元時使得總利潤最大.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,拋物線y=ax2+bx+c的對稱軸是x=,下面四條信息:
①c<0,②abc<0,③a-b+c>0,④2a-3b=0.你認為其中正確的有(     )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分6分)
手工課上,小明準備做一個形狀是菱形的風箏,這個菱形的兩條對角線長度之和恰好為60cm,菱形的面積S(單位:cm2)隨其中一條對角線的長x(單位:cm)的變化而變化.
(1)請直接寫出S與x之間的函數(shù)關系式(不要求寫出自變量x的取值范圍);
(2)當x是多少時,菱形風箏面積S最大?最大面積是多少?
參考公式:當x=-時,二次函數(shù)y=ax2+bx+c(a≠0)有最。ù螅┲

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若把拋物線y=x2-2x+1先向右平移2個單位,再向下平移3個單位,所得到的拋物線的函數(shù)關系式為y=ax2+bx+c,則b、c的值為(   )
A.b=2,c=-2B.b=-8,c=14
C.b=-6,c=6D.b=-8,c=18

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖為拋物線的圖像,A、B、C 為拋物線與坐標軸的交點,且OA=OC=1,則下列關系中正確的是(  )

A.a(chǎn)+b=-1             B.a(chǎn)-b=-1         C.b<2a       D.a(chǎn)c<0

查看答案和解析>>

同步練習冊答案