如圖,直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°.折疊紙片使BC經(jīng)過點(diǎn)D.點(diǎn)C落在點(diǎn)E處,BF是折痕,且BF=CF=8.

(l)求∠BDF的度數(shù);

(2)求AB的長.

 

【答案】

(1)90°;(2)6

【解析】

試題分析:(1)先利用等邊對等角可以得到∠FBC=∠C=30°,再利用折疊的性質(zhì)可以得到∠EBF=∠CBF=30°,從而可以求得結(jié)果;

(2)利用(1)中的結(jié)論可以求得線段BD,然后解直角三角形ABD即可求得AB.

(1)∵BF=CF=8,

∴∠FBC=∠C=30°,

∵折疊紙片使BC經(jīng)過點(diǎn)D,點(diǎn)C落在點(diǎn)E處,BF是折痕,

∴∠EBF=∠CBF=30°,

∴∠EBC=60°,

∴∠BDF=90°;

(2)∵∠EBC=60°,AD∥BC

∴∠ADB=60°,

∵BF=CF=8.

∴BD=BF•sin60°=4

∴在Rt△BAD中,AB=BD×sin60°=6.

考點(diǎn):本題考查的是折疊的性質(zhì),解直角三角形

點(diǎn)評:解答本題的關(guān)鍵是熟練掌握折疊的性質(zhì):折疊前后圖形的對應(yīng)邊、對應(yīng)角相等.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形紙片ABCD,AD⊥AB,AB=8,AD=CD=4,點(diǎn)E、F分別在線段AB、A精英家教網(wǎng)D上,將△AEF沿EF翻折,點(diǎn)A的落點(diǎn)記為P.
(1)當(dāng)AE=5,P落在線段CD上時(shí),PD=
 

(2)當(dāng)P落在直角梯形ABCD內(nèi)部時(shí),PD的最小值等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形紙片ABCD,AD⊥AB,AB=6,AD=CD=3,點(diǎn)E、F分別在線段AB、AD上,將△AEF沿EF翻折,點(diǎn)A的落點(diǎn)記為P.當(dāng)P落在直角梯形ABCD內(nèi)部時(shí),PD的最小值等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形紙片ABCD中,∠DCB=90°,AD∥BC,將紙片折疊,使頂點(diǎn)B與頂點(diǎn)D重合,折痕為CF.
若AD=2,BC=5,則AF:FB的值為( 。
A、
1
2
B、
1
3
C、
2
5
D、
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•臨汾二模)如圖,直角梯形紙片ABCD中,AD∥BC,∠A=90°,∠C=30°.折疊紙片使BC經(jīng)過點(diǎn)D,點(diǎn)C落在點(diǎn)E處,BF是折痕,且BF=CF=8.則AB的長是
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•內(nèi)江模擬)如圖,直角梯形紙片ABCD,AD⊥AB,AD=CD=4,點(diǎn)E、F分別在線段AB、CD上,將△AEF沿EF翻折,點(diǎn)A落在線段CD上的點(diǎn)P處,若AE=5,則PF的長為( 。

查看答案和解析>>

同步練習(xí)冊答案