【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=.
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
【答案】(1) y=﹣.(2) .
【解析】試題分析:(1)首先根據(jù)AO=5,以及sin∠AOC的值得出點(diǎn)A的坐標(biāo),然后求出反比例函數(shù)的解析式;(2)根據(jù)反比例函數(shù)解析式得出點(diǎn)B的坐標(biāo),然后求出一次函數(shù)的解析式,從而得出點(diǎn)C的坐標(biāo),然后得出△ABC的面積.
試題解析:(1)∵AO=5, sin∠AOC=∴點(diǎn)A(-4,3), ∴反比例函數(shù)的解析式為:y=.
(2)根據(jù)反比例函數(shù)解析式可得:點(diǎn)B(3,-4),
∴直線AB的解析式為y=-x-1,∴點(diǎn)C(-1,0),
∴1×3÷2+1×4÷2=3.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線y=x4與x軸,y軸分別交于B、A,將該直線繞A點(diǎn)順時(shí)針旋轉(zhuǎn)α,且tanα=,旋轉(zhuǎn)后與x軸交于C點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使有一動(dòng)點(diǎn)能在最短的時(shí)間內(nèi)從點(diǎn)A出發(fā),沿著A-P-C的 運(yùn)動(dòng)到達(dá)C點(diǎn),并且在AP上以每秒2個(gè)單位的速度移動(dòng),在PC上以每秒個(gè)單位移動(dòng),試用尺規(guī)作圖找到P點(diǎn)的位置(不寫作法,保留作圖痕跡),并求出所用的最短時(shí)間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】共享單車近日成為市民新寵,越來越多的居民選擇共享單車作為出行的交通工具,某中學(xué)課外興趣小組為了了解某小區(qū)居民每周使用共享單車時(shí)間的情況,隨機(jī)抽取了該小區(qū)部分使用共享單車的居民進(jìn)行調(diào)查(問卷調(diào)查表如圖所示),并用調(diào)查結(jié)果繪制了圖①、圖②兩幅每周使用共享單車時(shí)間的人數(shù)統(tǒng)計(jì)圖(均不完整),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答以下問題:
(1)本次接受問卷調(diào)查的共有 人;在扇形統(tǒng)計(jì)圖中“D”選項(xiàng)所占的百分比為 ;
(2)扇形統(tǒng)計(jì)圖中,“B”選項(xiàng)所對(duì)應(yīng)扇形圓心角為 度;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該小區(qū)共有1200名居民,請(qǐng)你估計(jì)該小區(qū)使用共享單車的時(shí)間在“A”選項(xiàng)的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程3x+6=2x-8移項(xiàng)后,正確的是( )
A.3x+2x=6-8
B.3x-2x=-8+6
C.3x-2x=-6-8
D.3x-2x=8-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地原有沙漠108公頃,綠洲54公頃,為改善生態(tài)環(huán)境,防止沙化現(xiàn)象,當(dāng)?shù)卣畬?shí)施了沙漠變綠洲”工程,要把部分沙漠改造為綠洲,使綠洲面積占沙漠面積的80%.設(shè)把x公頃沙漠改造為綠洲,則可列方程為( )
A.54+x=80%×108
B.54+x=80%(108-x)
C.54-x=80%(108+x)
D.108-x=80%(54+x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了打造森林城市,樹立城市新地標(biāo),實(shí)現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測量工具和所學(xué)的幾何知識(shí)測量“望月閣”的高度,來檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測點(diǎn)與“望月閣”底部間的距離不易測得,因此經(jīng)過研究需要兩次測量,于是他們首先用平面鏡進(jìn)行測量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),小亮看著鏡面上的標(biāo)記,他來回走動(dòng),走到點(diǎn)D時(shí),看到“望月閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測影長的方法進(jìn)行了第二次測量,方法如下:如圖,小亮從D點(diǎn)沿DM方向走了16米,到達(dá)“望月閣”影子的末端F點(diǎn)處,此時(shí),測得小亮身高FG的影長FH=2.5米,FG=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如下圖所示,且關(guān)于x的一元二次方程ax2+bx+c-m=0沒有實(shí)數(shù)根,有下列結(jié)論:①b2-4ac>0;②abc<0;③m>2.其中,正確結(jié)論的個(gè)數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com