【題目】如圖,在ABC中,∠BAC90°,ABAC,點D、E分別在BCAC上(點D不與點B、C重合),且∠ADE45°,若ADE是等腰三角形,則CE_____

【答案】2

【解析】

當(dāng)△ABD∽△DCE時,可能是DADE,也可能是EDEA,所以要分兩種情況求出CE長.

解:∵∠BAC90°,ABAC2,

∴∠BC45°

∵∠ADE45°,

∴∠BCADE

∵∠ADBC+∠DACDECADE+∠DAC,

∴∠ADBDEC

∵∠ADC+∠B+∠BAD180DEC+∠C+∠CDE180°,

∴∠ADC+∠B+∠BADDEC+∠C+∠CDE,

∴∠EDCBAD,

∴△ABD∽△DCE

∵∠DAEBAC90°ADE45°,

當(dāng)ADE是等腰三角形時,第一種可能是ADDE

∴△ABD≌△DCE

CDAB

BD2= CE,

當(dāng)ADE是等腰三角形時,第二種可能是EDEA

∵∠ADE45°,

此時有DEA90°

ADE為等腰直角三角形.

AEDEAC

∴CE=AC

當(dāng)ADEA時,點D與點B重合,不合題意,所以舍去,

因此CE的長為2

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,∠BAC=60°DBC邊上一點,(不與點B、C)重合,將線段AD繞點A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則∠ACE的度數(shù)是__________,線段AC,CDCE之間的數(shù)量關(guān)系是_______________.

(2)2,在△ABC中,AB=AC,∠BAC=90°DBC邊上一點(不與點B、C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請寫出∠ACE的度數(shù)及線段ADBD,CD之間的數(shù)量關(guān)系,并說明理由.

(3)如圖3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若點A滿足AB=AC,∠BAC=90°,請直接寫出線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB是直徑,PAB上一點,過點P作弦MN,°.

(1)AP=2,BP=6,求MN的長.

(2)MP=3 ;NP=5,求AB的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為格點三角形,圖中的就是格點三角形.在建立平面直角坐標(biāo)系后,點的坐標(biāo)為.

1)把向左平移8格后得到,在坐標(biāo)系方格紙中畫出的圖形并直接寫出點的坐標(biāo)為____;

2)把繞點按順時針方向旋轉(zhuǎn)后得到,在坐標(biāo)系方格紙中畫出的圖形并直接寫出點的坐標(biāo)為____________;

3在現(xiàn)有坐標(biāo)系的方格紙中以點為位似中心放大,使放大前后對應(yīng)邊長的比為,畫出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)在平面直角坐標(biāo)系中,用五點法畫出該二次函數(shù)的圖象;

2)根據(jù)圖象回答:

①當(dāng)自變量x的取值范圍滿足什么條件時,y0?

②當(dāng)0≤x3時,y的取值范圍是多少?

x

y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[感知] 如圖①,在四邊形ABCD中,點P在邊AB上(點P不與A、B重合), , 易證: DAP∽△PBC(不要求證明)

[探究]如圖②,在四邊形ABCD中,點P在邊AB上(點P不與AB重合),

1)求證:△DAP∽△PBC.

2)若PD=5,PC=10.BC=8AP的長.

[應(yīng)用]如圖③,在△ABC中,AC=BC=4,AB=6,點P在邊AB上(點P不與A、B重合),連結(jié)CP,作 ,與邊BC交于點E.當(dāng)CE=3EB時,直接寫出AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將繞點順時針旋轉(zhuǎn)得到,使點的對應(yīng)點恰好落在邊上,點的對應(yīng)點為,連接.下列結(jié)論一定正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中課前預(yù)習(xí)不達標(biāo)對應(yīng)的圓心角度數(shù)是   ;

3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機機抽取一位同學(xué)進行一幫一互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,

查看答案和解析>>

同步練習(xí)冊答案