如圖,AB為⊙O的直徑,點C是⊙O上一點,AD平分∠CAB交⊙O于點D,過點D作DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若AC=3,DE=2,求AD的長.

(1)證明:連接OD,
∵AD為∠EAB的平分線,
∴∠EAD=∠BAD,
∵OA=OD,
∴∠BAD=∠ODA,
∴∠EAD=∠ODA,
∴OD∥AE,
∵AE⊥ED,
∴OD⊥DE,
則DE為圓O的切線;
(2)∵DE為圓的切線,AE為圓的割線,
∴DE2=EC•EA=EC•(EC+AC),
∵AC=3,DE=2,
∴4=EC(EC+3),即EC2+3EC-4=0,即(EC-1)(EC+4)=0,
解得:EC=1,
則AE=AC+CE=3+1=4,
在Rt△AED中,AE=4,DE=2,
根據(jù)勾股定理得:AD=2
分析:(1)連接OD,由AD為角平分線得到一對角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行得到OD與AE平行,由AE垂直于ED得到OD垂直于DE,即可得證;
(2)由ED為圓的切線,EA為圓的割線,利用切割線定理列出關(guān)系式,將AC與DE長代入求出EC的長,進而求出AE的長,在直角三角形AED中,利用勾股定理即可求出AD的長.
點評:此題考查了切線的判定,切割線定理,平行線的判定與性質(zhì),熟練掌握切線的判定方法是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長為
40m
40m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習(xí)冊答案