【題目】奇思參加我市電視臺(tái)組織的“牡丹杯”智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān),第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題奇思都不會(huì),不過(guò)奇思還有兩個(gè)“求助”可以使用(使用“求助”一次可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果奇思兩次“求助”都在第一道單選題中使用,求他通關(guān)的概率;
(2)如果奇思每道單選題各使用一次“求助",請(qǐng)用列表法或畫樹狀圖的方法求他順利通關(guān)的概率.
【答案】(1);(2)
【解析】
(1)由第一道題單選題有3個(gè)選項(xiàng),如果奇思兩次“求助”都在第一道單選題中使用,故可知第一道單選題肯定能對(duì),所以第二道單選題對(duì)的概率即為他通關(guān)的概率;
(2)根據(jù)題意,畫出樹狀圖,分析出等可能的結(jié)果,再利用概率公式求概率即可.
解:(1)∵奇思兩次“求助”都在第一道單選題中使用,
∴第一道單選題肯定能對(duì).
又∵第二道單選題對(duì)的概率為,
∴他通關(guān)的概率為;
(2)奇思每道單選題各使用一次“求助”,分別用、表示第一道單選題剩下的2個(gè)選項(xiàng),、、表示第二道單選題剩下的3個(gè)選項(xiàng),則所畫樹狀圖如下所示:
共有6種等可能的結(jié)果,奇思順利通關(guān)的結(jié)果只有1種,
∴奇思順利通關(guān)的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+2k+4與拋物線y=x 2
(1)求證:直線與拋物線有兩個(gè)不同的交點(diǎn);
(2)設(shè)直線與拋物線分別交于A, B兩點(diǎn).
①當(dāng)k=-時(shí),在直線AB下方的拋物線上求點(diǎn)P,使△ABP的面積等于5;
②在拋物線上是否存在定點(diǎn)D使∠ADB=90°,若存在,求點(diǎn)D到直線AB的最大距離. 若不存在,請(qǐng)你說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,畫一條平行于BC的直線,使其將△ABC分成兩部分,且所分三角形與梯形面積比為1:3;
(2)如圖②,△ABC中AB=4,AC=3,BC=6,D是△ABC中AC邊上的點(diǎn),AD=2,過(guò)點(diǎn)D畫一條直線l將△ABC分成兩部分,l與△ABC另一邊的交點(diǎn)為點(diǎn)P,使其所分的一個(gè)三角形與△ABC相似,并求出DP的長(zhǎng);
(3)如圖③所示,在等腰△ABC中,CA=CB=10,AB=12.在△ABC中放入正方形DEMN和正方形EFPH,使得DE.EF在邊AB上,點(diǎn)P.N分別在邊CB.CA上,若較大正方形的邊長(zhǎng)為a,請(qǐng)用含a的代數(shù)式表示較小正方形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點(diǎn)P,使得∠APB=30°,如圖②,小明的作圖方法如下:
第一步:分別以點(diǎn)A,B為圓心,AB長(zhǎng)為半徑作弧,兩弧在AB上方交于點(diǎn)O;
第二步:連接OA,OB;
第三步:以O為圓心,OA長(zhǎng)為半徑作⊙O,交l于P1,P2;
所以圖中P1,P2即為所求的點(diǎn).
(1)在圖②中,連接P1A,P1B,證明∠AP1B=30°;
(2)如圖③,用直尺和圓規(guī)在矩形ABCD內(nèi)作出所有的點(diǎn)P,使得∠BPC=45°,(不寫做法,保留作圖痕跡).
(3)已知矩形ABCD,若BC=2.AB=m,P為AD邊上的點(diǎn),若滿足∠BPC=45°的點(diǎn)P恰有兩個(gè),則m的取值范圍為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C,D是⊙O上的四個(gè)點(diǎn).
(1)如圖1,若∠ADC=∠BCD=90°,AD=CD,求證:AC⊥BD;
(2)如圖2,若AC⊥BD.垂足為E,AB=4,DC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:如圖,過(guò)圓外一點(diǎn)作圓的切線.
已知:P為⊙O外一點(diǎn).
求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.
小敏的作法如下:如圖,
(1)連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C.
(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙O于A,B兩點(diǎn).
(3)作直線PA,PB.
所以直線PA,PB就是所求作的切線.
老師認(rèn)為小敏的作法正確.
請(qǐng)回答:
(1)連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是_________.
(2)如果⊙O的半徑等于3,點(diǎn)P到切點(diǎn)的距離為4,求點(diǎn)A與點(diǎn)B之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC為等邊三角形, M為三角形外任意一點(diǎn),把△ABM繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°到△CAN的位置.
(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數(shù)和求AM的長(zhǎng).
(2)如圖②,若∠BMC = n°,試寫出AM、BM、CM之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)A,B的坐標(biāo)分別為A(4,0),B(4,3),動(dòng)點(diǎn)N,P分別從點(diǎn)B,A同時(shí)出發(fā),點(diǎn)N以1單位/秒的速度向終點(diǎn)C運(yùn)動(dòng),點(diǎn)P以5/4單位/秒的速度向終點(diǎn)C運(yùn)動(dòng),連結(jié)NP,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t<4)
(1)直接寫出OA,AB,AC的長(zhǎng)度;
(2)求證:△CPN∽△CAB;
(3)在兩點(diǎn)的運(yùn)動(dòng)過(guò)程中,若點(diǎn)M同時(shí)以1單位/秒的速度從點(diǎn)O向終點(diǎn)A運(yùn)動(dòng),求△MPN的面積S與運(yùn)動(dòng)的時(shí)間t的函數(shù)關(guān)系式(三角形的面積不能為0),并直接寫出當(dāng)S=時(shí),運(yùn)動(dòng)時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,是等邊三角形,、的延長(zhǎng)線分別交于點(diǎn)、,連接、,與相交于點(diǎn),給出下列結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com