某物流公司的甲、乙兩輛貨車分別從A、B兩地同時(shí)相向而行,并以各自的速度勻速行駛,途經(jīng)配貨站C,甲車先到達(dá)C地,并在C地用1小時(shí)配貨,然后按原速度開往B地,乙車從B地直達(dá)A地,圖是甲、乙兩車間的距離y(千米)與乙車出發(fā)x(時(shí))的函數(shù)的部分圖象.
(1)A、B兩地的距離是______千米,甲車出發(fā)______小時(shí)到達(dá)C地;
(2)求乙車出發(fā)2小時(shí)后直至到達(dá)A地的過程中,y與x的函數(shù)關(guān)系式及x的取值范圍,并在圖中補(bǔ)全函數(shù)圖象;
(3)乙車出發(fā)多長(zhǎng)時(shí)間,兩車相距150千米.
(1)由圖象可知,A、B兩地的距離是300千米,甲車出發(fā)1.5小時(shí)到達(dá)C地;

(2)由圖象可知,乙的速度為v=30÷(2-1.5)=60,
設(shè)甲的速度為v,依題意得:
(v+60)×1.5=300-30,
解得v=120,
當(dāng)2≤x≤2.5時(shí),設(shè)y與x的函數(shù)關(guān)系式為:y=kx+b,
2小時(shí)這一時(shí)刻,甲乙相遇;2到2.5小時(shí),甲停乙車運(yùn)動(dòng);
則2.5小時(shí)時(shí),兩車相距30km,
∴D(2.5,30),
2.5小時(shí)到3.5小時(shí),兩車都運(yùn)動(dòng);
則兩車相距180+30=210,
∴E(3.5,210),
3.5到5小時(shí),甲走完全程,乙在運(yùn)動(dòng).
則兩車相距:210+1.5×60=300,
∴F(5,300),
把點(diǎn)(2,0),(2.5,30)代入,得y=60x-120,
當(dāng)2.5<x≤3.5時(shí),設(shè)y與x的函數(shù)關(guān)系式為:y=mx+n,
把點(diǎn)(2.5,30),(3.5,210)代入,得y=180x-420,
把(3.5,210),(5,300)代入得y=60x,
即y=
60x-120(2≤x≤2.5)
180x-420(2.5<x≤3.5)
60x(3.5<x≤5)
;

(3)把y=150代入y=180x-420中,得x=3
1
6
,
根據(jù)對(duì)稱性可知,相遇前,相距150千米的時(shí)間
為2-(3
1
6
-2)=
5
6
,
即乙車出發(fā)
5
6
小時(shí)或3
1
6
小時(shí),兩車相距150千米.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,把矩形紙片OABC放入直角坐標(biāo)系xOy中,使OA、OC分別落在x軸、y軸的正半軸上,連接AC,將△ABC沿AC翻折,點(diǎn)B落在該坐標(biāo)平面內(nèi),設(shè)這個(gè)落點(diǎn)為D,CD交x軸于點(diǎn)E.如果CE=5,OC、OE的長(zhǎng)是關(guān)于x的方程x2+(m-1)x+12=0的兩個(gè)根,并且OC>OE.
(1)求點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)F是AC的中點(diǎn),判斷點(diǎn)(8,-20)是否在過D、F兩點(diǎn)的直線上,并說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線AB與直線BC相交于點(diǎn)B(-2,2),直線AB與y軸相交于點(diǎn)A(0,4),直線BC與x軸、y軸分別相交于點(diǎn)D(-1,0)、點(diǎn)C.
(1)求直線AB的解析式;
(2)過點(diǎn)A作BC的平行線交x軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,點(diǎn)P是直線AB上一動(dòng)點(diǎn)且在x軸的上方,如果以點(diǎn)D、E、P、Q為頂點(diǎn)的平行四邊形的面積等于△ABC面積,請(qǐng)求出點(diǎn)P的坐標(biāo),并直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A,B,C在一次函數(shù)y=-2x+m的圖象上,它們的橫坐標(biāo)依次為-1,1,2,分別過這些點(diǎn)作x軸與y軸的垂線,則圖中陰影部分的面積之和是( 。
A.1B.3C.3(m-1)D.
3
2
(m-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點(diǎn)組成的正方形邊線(如圖①)按一定方向運(yùn)動(dòng).圖②是P點(diǎn)運(yùn)動(dòng)的路程s(個(gè)單位)與運(yùn)動(dòng)時(shí)間t(秒)之間的函數(shù)圖象,圖③是P點(diǎn)的縱坐標(biāo)y與P點(diǎn)運(yùn)動(dòng)的路程s之間的函數(shù)圖象的一部分.

(1)s與t之間的函數(shù)關(guān)系式是:______;
(2)與圖③相對(duì)應(yīng)的P點(diǎn)的運(yùn)動(dòng)路徑是:______;P點(diǎn)出發(fā)______秒首次到達(dá)點(diǎn)B;
(3)寫出當(dāng)3≤s≤8時(shí),y與s之間的函數(shù)關(guān)系式,并在圖③中補(bǔ)全函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0)、(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線y=-
1
2
x+b
交折線OAB于點(diǎn)E.
(1)記△ODE的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形O1A1B1C1,DE=
5
,試探究四邊形O1A1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,直線y=x+1與y軸交于點(diǎn)A1,以O(shè)A1為邊作正方形OA1B1C1,然后延長(zhǎng)C1B1與直線y=x+1交于點(diǎn)A2,得到第一個(gè)梯形A1OC1A2;再以C1A2為邊作正方形C1A2B2C2,同樣延長(zhǎng)C2B2與直線y=x+1交于點(diǎn)A3得到第二個(gè)梯形A2C1C2A3;再以C2A3為邊作正方形C2A3B3C3,延長(zhǎng)C3B3,得到第三個(gè)梯形;…則第2個(gè)梯形A2C1C2A3的面積是______;第n(n是正整數(shù))個(gè)梯形的面積是______(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某客船往返于A、B兩碼頭,在A、B間有旅游碼頭C.客船往返過程中,船在C、B處停留時(shí)間忽略不計(jì),設(shè)客船離開碼頭A的距離s(千米)與航行的時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象提供的信息,解答下列問題:
(1)船只從碼頭A→B航行的速度為______千米/時(shí);船只從碼頭B→A,航行的速度為______千米/時(shí);
(2)過點(diǎn)C作CHt軸,分別交AD、DF于點(diǎn)G、H,設(shè)AC=x,GH=y,求出y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線y=-2x+2分別與x軸、y軸交于A、B兩點(diǎn),以線段AB為直角邊在第一象限內(nèi)作Rt△ABC,∠BAC=90°.
(1)求點(diǎn)A、B坐標(biāo);
(2)若AC=
1
2
AB,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案