如圖,ABCD和GDEF是兩個(gè)邊長(zhǎng)為a,b的正方形,求陰影部分的面積

答案:
解析:

(a2+b2-ab)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖1,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)在圖1中,若G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
(3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一點(diǎn),且∠DCE=45°,BE=4,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•濰坊)如圖1所示,將一個(gè)邊長(zhǎng)為2的正方形ABCD和一個(gè)長(zhǎng)為2、寬為1的長(zhǎng)方形CEFD拼在一起,構(gòu)成一個(gè)大的長(zhǎng)方形ABEF.現(xiàn)將小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為a.
(1)當(dāng)點(diǎn)D′恰好落在EF邊上時(shí),求旋轉(zhuǎn)角a的值;
(2)如圖2,G為BC中點(diǎn),且0°<a<90°,求證:GD′=E′D;
(3)小長(zhǎng)方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉(zhuǎn)角a的值;若不能說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•沈陽(yáng)模擬)如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)在圖1中,若G在AD上,且∠GCE=45°,探索GE、BE、GD之間的數(shù)量關(guān)系,并加以證明;
(3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=10,E是AB上一點(diǎn),且∠DCE=45°,BE=3,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
①求證:CE=CF;
②在圖①中,若G在AD上,且∠GCE=45°,則GE、BE、GD有何關(guān)系?證明你的結(jié)論;
③運(yùn)用①②解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題.如圖②在直角梯形ABCD中,AD∥BC(BC>AD)∠B=90°,AB=BC=12,E是AB上一點(diǎn),且∠DCE=45°,BE=4,求DE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•內(nèi)江模擬)如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG,并延長(zhǎng)交GD于H.試猜想線段BE和DG的數(shù)量及位置關(guān)系,并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案