如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△DEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止.現(xiàn)不考慮旋轉(zhuǎn)開始和結(jié)束時(shí)重合的情況,設(shè)DE,DF(或它們的延長(zhǎng)線)分別交BC(或它們的延長(zhǎng)線)所在的直線于G,H點(diǎn),如圖(2)

(1)問(wèn):始終與△AGC相似的三角形有______及______;
(2)設(shè)CG=x,BH=y,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)圖(2)的情形說(shuō)明理由);
(3)問(wèn):當(dāng)x為何值時(shí),△AGH是等腰三角形.
【答案】分析:(1)根據(jù)△ABC與△EFD為等腰直角三角形,AC與DE重合,利用相似三角形的判定定理即可得出結(jié)論.
(2)由△AGC∽△HAB,利用其對(duì)應(yīng)邊成比例列出關(guān)于x、y的關(guān)系式:9:y=x:9即可.
(3)此題要采用分類討論的思想,當(dāng)CG<BC時(shí),當(dāng)CG=BC時(shí),當(dāng)CG>BC時(shí)分別得出即可.
解答:解:(1)∵△ABC與△EFD為等腰直角三角形,AC與DE重合,
∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,
∴∠H=∠CAG,
∵∠ACG=∠B=45°,
∴△AGC∽△HAB,
∴同理可得出:始終與△AGC相似的三角形有△HAB和△HGA;
故答案為:△HAB和△HGA.

(2)∵△AGC∽△HAB,
∴AC:HB=GC:AB,即9:y=x:9,
∴y=(0<x<9),
∵AB=AC=9,∠BAC=90°,
∴BC===9
答:y關(guān)于x的函數(shù)關(guān)系式為y=(0<x<9).

(3)①當(dāng)CG<BC時(shí),∠GAC=∠H<∠HAG,
∴AG<GH,
∵GH<AH,
∴AG<CH<GH,
又∵AH>AG,AH>GH,
此時(shí),△AGH不可能是等腰三角形,
②當(dāng)CG=BC時(shí),G為BC的中點(diǎn),H與C重合,△AGH是等腰三角形,
此時(shí),GC=,即x=,
③當(dāng)CG>BC時(shí),由(1)△AGC∽△HGA,
所以,若△AGH必是等腰三角形,只可能存在GH=AH,
若GH=AH,則AC=CG,此時(shí)x=9,
如圖(3),當(dāng)CG=BC時(shí),
注意:DF才旋轉(zhuǎn)到與BC垂直的位置,
此時(shí)B,E,G重合,∠AGH=∠GAH=45°,
所以△AGH為等腰三角形,所以CG=9
綜上所述,當(dāng)x=9或x=或9時(shí),△AGH是等腰三角形.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)相似三角形的判定與性質(zhì),等腰三角形的性質(zhì),等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)等知識(shí)點(diǎn)的理解和掌握,綜合性較強(qiáng),難易程度適中,是一道很典型的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,等邊三角形ABC中,D、E分別是BC、AC上的點(diǎn),且AE=CD.
(1)求證:AD=BE;
(2)求:∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰直角△ABC中,∠ABC=90°,AB=BC,AD∥BC,E是AB的中點(diǎn),BE=AD.
(1)試說(shuō)明:CE⊥BD;
(2)線段AC與ED之間存在什么關(guān)系?為什么?
(3)判斷△BDC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,△DEF是由△ABC平移得到的,若BC=6cm,E是BC的中點(diǎn),則平移的距離是
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,線段AM為BC邊上的中線.動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊且在CD的下精英家教網(wǎng)方作等邊△CDE,連接BE.
(1)填空:當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)M時(shí),∠ACE=
 
度;
(2)當(dāng)點(diǎn)D在線段AM上(點(diǎn)D不運(yùn)動(dòng)到點(diǎn)A)時(shí),求證:△ADC≌△BEC;
(3)若AB=8,以點(diǎn)C為圓心,以5為半徑作⊙C與直線BE相交于點(diǎn)P、Q兩點(diǎn),在點(diǎn)D運(yùn)動(dòng)的過(guò)程中(點(diǎn)D與點(diǎn)A重合除外),試求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,圓內(nèi)接△ABC中,AB=BC=CA,OD、OE為⊙O的半徑,OD⊥BC于點(diǎn)F,OE⊥AC于點(diǎn)G,陰影部分四邊形OFCG的面積是△ABC的面積的
 

查看答案和解析>>

同步練習(xí)冊(cè)答案