已知:是等腰直角三角形,,平分于點(diǎn),
   
求證:.

延長(zhǎng)CE與BA的延長(zhǎng)線相交于M,先證得△BEM≌△CEM,可得CE=ME,再證得△ABD≌△CAM,可得BD=CM,從而可以證得結(jié)論.

解析試題分析:延長(zhǎng)CE與BA的延長(zhǎng)線相交于M

平分,,BE=BE
∴△BEM≌△CEM
∴CE=ME
∵∠BAC=90°,,∠BDA=∠CDE
∴∠BAD=∠DCE
是等腰直角三角形
∴△ABD≌△CAM
.
考點(diǎn):等腰直角三角形的性質(zhì),角平分線的性質(zhì),全等三角形的判定和性質(zhì)
點(diǎn)評(píng):全等三角形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考中比較常見(jiàn)的知識(shí)點(diǎn),一般難度不大,需熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=
底邊
=
BC
AB
.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對(duì)于0°<A<180°,∠A的正對(duì)值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)一模)通過(guò)學(xué)習(xí)銳角三角比,我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值是一一對(duì)應(yīng)的,因此,兩條邊長(zhǎng)的比值與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(duì)(can),如圖(1)在△ABC中,AB=AC,底角B的鄰對(duì)記作canB,這時(shí)canB=
底邊
=
BC
AB
,容易知道一個(gè)角的大小與這個(gè)角的鄰對(duì)值也是一一對(duì)應(yīng)的.根據(jù)上述角的鄰對(duì)的定義,解下列問(wèn)題:
(1)can30°=
3
3

(2)如圖(2),已知在△ABC中,AB=AC,canB=
8
5
,S△ABC=24,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中,正確的有( 。
①腰相等的兩個(gè)等腰三角形全等;
②三角之比為3:4:5的三角形是直角三角形;
③在△ABC中,AB=AC=x,BC=6,則腰長(zhǎng)x的取值范圍是3<x<6;
④要了解一批燈管的使用壽命,從中選取了20只進(jìn)行測(cè)試,在這個(gè)問(wèn)題中20支燈管是樣本容量;
⑤已知△ABC的三邊長(zhǎng)分別是a,b,c,且
a
b
+
a
c
=
b+c
b+c-a
,則△ABC一定是底邊長(zhǎng)為a的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江杭州蕭山區(qū)黨灣鎮(zhèn)初中八年級(jí)12月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

下列說(shuō)法中,正確的有(     )

①腰相等的兩個(gè)等腰三角形全等;②三角之比為3:4:5的三角形是直角三角形;③在中,AB=AC=x,BC=6,則腰長(zhǎng)x的取值范圍是3<x<6;④要了解一批燈管的使用壽命,從中選取了20只進(jìn)行測(cè)試,在這個(gè)問(wèn)題中20支燈管是樣本容量;⑤已知的三邊長(zhǎng)分別是a、b、c,且,則一定是底邊長(zhǎng)為a的等腰三角形

A.0個(gè)            B.1個(gè)            C.2個(gè)            D.3個(gè)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市昌平區(qū)初三上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結(jié)中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)

sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.

根據(jù)上述對(duì)角的正對(duì)定義,解下列問(wèn)題:

(1)sad 的值為(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案