【題目】如圖所示,已知拋物線經(jīng)過點(diǎn)A(-2,0)、B(4,0)、C(0,-8),拋物線y=ax2+bx+c(a≠0)與直線y=x-4交于B , D兩點(diǎn).
(1)求拋物線的解析式并直接寫出D點(diǎn)的坐標(biāo);
(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線BD下方,試求出△BDP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是線段BD上異于B、D的動(dòng)點(diǎn),過點(diǎn)Q作QF⊥x軸于點(diǎn)F , 交拋物線于點(diǎn)G . 當(dāng)△QDG為直角三角形時(shí),求點(diǎn)Q的坐標(biāo).
【答案】
(1)
設(shè)拋物線的解析式為y=ax2+bx+c
∵拋物線經(jīng)過點(diǎn)A(-2,0)、B(4,0)、C(0,-8)
∴ ,解得.
∴拋物線的解析式為y=x2-2x-8
點(diǎn)D的坐標(biāo)為(-1,-5)
(2)
過P作PE∥y軸,交直線AB于點(diǎn)E
設(shè)P(x,x2-2x-8)則E(x,x-4)
∴PE=x-4-(x2-2x-8)=-x2+3x+4
∴S△BDP=S△DEP+S△BEP= PE·(xE-xD)+ PE·(xB-xE)
= PE·(xB-xD)= PE= (-x2+3x+4)
=- (x- )2+
∴當(dāng)x= 時(shí),△BDP面積的最大值為
此時(shí)點(diǎn)P的坐標(biāo)為( ,- )
(3)
設(shè)直線y=x-4與y軸相交于點(diǎn)K,則K(0,-4)
∵B(4,0),∴OB=OK=4,∴∠OKB=∠OBK=45°
∵QF⊥x軸,∴∠DQG=45°
若△QDG為直角三角形,則△QDG是等腰直角三角形
①∠QDG=90°,過D作DH⊥QG于H,∴QG=2DH,
∴-x2+3x+4=2(x+1),解得x 1=-1(舍去),
x 2=2,∴Q1(2,-2)
②∠DGQ=90°,則DH=QH,
∴-x2+3x+4=x+1,解得x 1=-1(舍去),x 2=3,∴P2(3,-1)
綜上所述,當(dāng)△QDG為直角三角形時(shí),點(diǎn)Q的坐標(biāo)為(2,-2)或(3,-1)
【解析】(1)設(shè)出一元二次函數(shù),利用待定系數(shù)法求出a、b、c的值;
(2)設(shè)出PE兩點(diǎn)的坐標(biāo),從圖中可以看出SBDP=SEPB+SEPD.運(yùn)用二次函數(shù)的性質(zhì)求出SBDP的的最值及P點(diǎn)的坐標(biāo);
(3)一次函數(shù)為y=x-4,則意味著∠OKB=∠OBK=45°,則如果△QDG是直角三角形,必定是等腰直角三角形。但接下來要分兩種情況去進(jìn)行討論:①∠QDG=90°;②∠DGQ=90°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的圖象的相關(guān)知識(shí),掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn),以及對(duì)二次函數(shù)的性質(zhì)的理解,了解增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雖然近幾年無(wú)錫市政府加大了太湖水治污力度,但由于大規(guī)模、高強(qiáng)度的經(jīng)濟(jì)活動(dòng)和日益增加的污染負(fù)荷,使部分太湖水域水質(zhì)惡化,富營(yíng)養(yǎng)化不斷加。疄榱吮Wo(hù)水資源,我市制定一套節(jié)水的管理措施,其中對(duì)居民生活用水收費(fèi)作如下規(guī)定:
月用水量(噸) | 單價(jià)(元/噸) |
不大于10噸部分 | 1.5 |
大于10噸不大于m噸部分(20≤m≤50) | 2 |
大于m噸部分 | 3 |
(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費(fèi);
(2)記該用戶六月份用水量為x噸,繳納水費(fèi)為y元,試列出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該用戶六月份用水量為40噸,繳納水費(fèi)y元的取值范圍為70≤y≤90,試求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A、C分別在直線a、b上,且a∥b , ∠1=65°,則∠2的度數(shù)為
A.65°
B.55°
C.35°
D.25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于點(diǎn)D,DE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD是AB的中垂線,垂足為D,DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)求證:DE=DF;
(2)若線段CE的長(zhǎng)為3 cm,BC的長(zhǎng)為4 cm,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有40個(gè)黑、白兩種顏色的球,這些球除顏色外完全相同.小麗做摸球?qū)嶒?yàn),攪勻后她從盒子里摸出一個(gè)球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過程,表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
若從盒子里隨機(jī)摸出一個(gè)球,則摸到白球的概率的估計(jì)值為 . (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車交易市場(chǎng)為了解二手轎車的交易情況,將本市場(chǎng)去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時(shí)間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計(jì)圖(圖都不完整).
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)該汽車交易市場(chǎng)去年共交易二手轎車 輛.
(2)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整.(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù))
(3)在扇形統(tǒng)計(jì)圖中,D類二手轎車交易輛數(shù)所對(duì)應(yīng)扇形的圓心角為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市今年1月份起調(diào)整居民用水價(jià)格,每立方米水費(fèi)上漲25%,小明家去年12
月份的水費(fèi)是18元,而今年5月份的水費(fèi)是36元,已知小明家今年5月份的用水量比12
月份多6 m3,求該市今年居民用水的價(jià)格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是根據(jù)某市2010年至2014年工業(yè)生產(chǎn)總值繪制的折線統(tǒng)計(jì)圖,觀察統(tǒng)計(jì)圖獲得以下信息,其中信息判斷錯(cuò)誤的是( )
A.2010年至2014年間工業(yè)生產(chǎn)總值逐年增加
B.2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元
C.2012年與2013年每一年與前一年比,其增長(zhǎng)額相同
D.從2011年至2014年,每一年與前一年比,2014年的增長(zhǎng)率最大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com