【題目】如圖,請?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
【答案】證明見解析
【解析】
試題分析:根據(jù)平行四邊形的判定方法就可以組合出不同的結(jié)論,然后即可證明.
其中解法一是證明兩組對角相等的四邊形是平行四邊形;
解法二是證明兩組對邊平行的四邊形是平行四邊形;
解法三是證明一組對邊平行且相等的四邊形是平行四邊形;
解法四是證明兩組對角相等的四邊形是平行四邊形.
解:已知:①③,①④,②④,③④均可,其余均不可以.
解法一:
已知:在四邊形ABCD中,①AD∥BC,③∠A=∠C,
求證:四邊形ABCD是平行四邊形.
證明:∵AD∥BC,
∴∠A+∠B=180°,∠C+∠D=180°.
∵∠A=∠C,
∴∠B=∠D.
∴四邊形ABCD是平行四邊形.
解法二:
已知:在四邊形ABCD中,①AD∥BC,④∠B+∠C=180°,
求證:四邊形ABCD是平行四邊形.
證明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四邊形ABCD是平行四邊形;
解法三:
已知:在四邊形ABCD中,②AB=CD,④∠B+∠C=180°,
求證:四邊形ABCD是平行四邊形.
證明:∵∠B+∠C=180°,
∴AB∥CD,
又∵AB=CD,
∴四邊形ABCD是平行四邊形;
解法四:
已知:在四邊形ABCD中,③∠A=∠C,④∠B+∠C=180°,
求證:四邊形ABCD是平行四邊形.
證明:∵∠B+∠C=180°,
∴AB∥CD,
∴∠A+∠D=180°,
又∵∠A=∠C,
∴∠B=∠D,
∴四邊形ABCD是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象經(jīng)過點(diǎn)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)的圖象上,過點(diǎn)B作BC∥x軸,交y軸于點(diǎn)C,且AC=AB.求:
(1)這個(gè)反比例函數(shù)的解析式;
(2)直線AB的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(2,3),AC⊥x軸于C,則點(diǎn)C的坐標(biāo)為( ).
A. (0,3) B. (3,0) C. (0,2) D. (2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點(diǎn)D,交BC于點(diǎn)E.
(1)求證:BE=CE;
(2)若BD=2,BE=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,假命題的個(gè)數(shù)是( )
①垂直于半徑的直線一定是這個(gè)圓的切線;
②圓有且只有一個(gè)外切三角形;
③三角形有且只有一個(gè)內(nèi)切圓;
④三角形的內(nèi)心到三角形的三個(gè)頂點(diǎn)的距離相等.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角板ABC的斜邊AB=12cm,∠A=30°,將三角板ABC繞C順時(shí)針旋轉(zhuǎn)90°至三角板A'B'C'的位置后,再沿CB方向向左平移,使點(diǎn)B'落在原三角板ABC的斜邊AB上,則三角板A'B'C'平移的距離為( )
A.6cm B.4cm C.(6﹣)cm D.()cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)一次函數(shù)的圖象平行于直線y=-2x,且過點(diǎn)A(-4,2),求這個(gè)函數(shù)的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com