【題目】如圖,將△ABC沿著射線BC方向平移至△A'B'C',使點A落在∠ACB的外角平分線CD上,連結(jié)AA′.
(1)判斷四邊形ACC′A的形狀,并說明理由.
(2)在△ABC中,∠B=90°,AB=24,cos∠BAC=,求CB的長.
【答案】(1)四邊形ACC'A'是菱形,理由詳見解析;(2)CB=10.
【解析】
(1)根據(jù)平行四邊形的判定定理(有一組對邊平行且相等的四邊形是平四邊形)推知四邊形ACC'A'是平行四邊形.有一組鄰邊相等的平行四邊形是菱形推知四邊形ACC'A'是菱形.
(2)通過解直角△ABC得到AC的長,利用勾股定理即可得到BC的長度.
(1)四邊形ACC'A'是菱形.理由如下:
由平移的性質(zhì)得到:AC∥A′C′,且AC=A′C′,
則四邊形ACC'A'是平行四邊形.
又∵CD平分∠ACB的外角,
∴∠ACA′=∠A'CC',
∵AA'∥BB',
∴∠C'CA'=∠AA'C,
∴∠AA'C=∠ACA',
∴AA'=AC,
∴四邊形ACC'A'是菱形.
(2)∵在△ABC中,∠B=90°,AB=24,cos∠BAC=,
∴cos∠BAC=,即
∴AC=26.
∴由勾股定理知:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有3個紅球、2個黃球和1個白球,每個球除顏色外都相同,將球搖勻,從中任意摸出1個球.
(1)摸到的球的顏色可能是______;
(2)摸到概率最大的球的顏色是______;
(3)若將每個球都編上號碼,分別記為1號球(紅)、2號球(紅)、3號球(紅)、4號球(黃)、5號球(黃)、6號球(白),那么摸到1~6號球的可能性______(填相同或者不同);
(4)若在袋子中再放一些這樣的黃球,從中任意摸出1個球,使摸到黃球的概率是,則放入的黃球個數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知一次函數(shù)的圖象與軸、軸分別交于、兩點,將這條直線進行平移后交軸、軸分別交于、,要使點、、、構(gòu)成的四邊形面積為4,則直線的解析式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,tan∠BAC=2,A(0,a),B(b,0),點C在第二象限,BC與y軸交于點D(0,c),若y軸平分∠BAC,則點C的坐標不能表示為( 。
A. (b+2a,2b) B. (﹣b﹣2c,2b)
C. (﹣b﹣c,﹣2a﹣2c) D. (a﹣c,﹣2a﹣2c)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°, ∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB,AC于點M和N,又分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D.
求證:(1)點D在AB的中垂線上.
(2)當CD=2時,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為24,點D在線段AC上,點F在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( )
A.3B.4C.6D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電影《厲害了,我的國》震撼上演后,引起了大家的強烈共鳴,當“復(fù)興號”一幕又一幕的奔馳在祖國廣袤的大地上,中國高鐵的車輪快速的滾出了嶄新中國的新畫卷.中國高鐵的飛速發(fā)展,使越來越多的人選擇高鐵出行.為了保證市民出行方便,某市的高鐵站出入口與地鐵站出入口進行對接.已知某人沿著坡角為30°的樓梯AB從A行至B,后沿BC路線上斜坡CD,坡角為30°,再行走一段距離DE,到達高鐵入口處.若入口處樓梯EF的坡角為45°,DE∥BC∥AF,AB=20米,CD=4米,那么EF的長度是多少米?(保留0.1米)(≈1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】ABCD為矩形的四個頂點,AB=16 cm,AD=6 cm,動點P、Q分別從點A、C同時出發(fā),點P以3 cm/s的速度向點B移動,一直到達B為止,點Q以2 cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,四邊形ABCD為平行四邊形,AD=a,AC為對角線,BM∥AC,過點D作 DE∥CM,交AC的延長線于F,交BM的延長線于E.
(1)求證:△ADF≌△BCM;
(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四邊形ABED的面積(用含a的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com