科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線L是第一、三象限的角平分線.
(1)由圖觀察易知A(0,2)關(guān)于直線l的對稱點的坐標(biāo)為(2,0),請在圖中分別標(biāo)明B(5,3) 、C(-2,5) 關(guān)于直線l的對稱點、的位置,并寫出他們的坐標(biāo): 、 ;
(2)結(jié)合圖形觀察以上三組點的坐標(biāo),你會發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點P(a,b)關(guān)于第一、三象限的角平分線l的對稱點的坐標(biāo)為 (不必證明);
(3)已知兩點D(1,-3)、E(-1,-4),試在直線L上畫出點Q,使點Q到D、E兩點的距離之和最小,最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:y + 2與x成正比例,且當(dāng)x = 1時,y的值為4 .
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若點(−1,a)、點( 2,b)是該函數(shù)圖像上的兩點,試比較a、b的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3) 拓展與應(yīng)用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么D點到直線AB的距離是 _________ cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com