【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).
(1)如圖,當(dāng)∠APB=45°時(shí),求AB及PD的長(zhǎng);
(2)當(dāng)∠APB變化,且其它條件不變時(shí),求PD的最大值,及相應(yīng)∠APB的大。
【答案】
【1】(1)①如圖11,作AE⊥PB于點(diǎn)E.
∵△APE中,∠APE=45°,,
∴,
.
∵,
∴.
在Rt△ABE中,∠AEB=90°,
∴.…………1分
②解法一:如圖12,因?yàn)樗倪呅?/span>ABCD為正方形,可將
△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△,
可得△≌△,,.
∴=90°,=45°,=90°.
∴.分
∴.…………2分
解法二:如圖13,過點(diǎn)P作AB的平行線,與DA的延長(zhǎng)線交于F,設(shè)DA的 延長(zhǎng)線交PB于G.
在Rt△AEG中,可得
,
,.
在Rt△PFG中,可得,.
在Rt△PDF中,可得
.
【2】(2)如圖14所示,將△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△, PD 的最大值即為的最大值.
∵△中,,,,
且P、D兩點(diǎn)落在直線AB的兩側(cè),
∴當(dāng)三點(diǎn)共線時(shí),取得最大值(見圖15).
此時(shí),即的最大值為6. …………4分
此時(shí)∠APB=180°-=135°. …………5分
【解析】
(1)作輔助線,過點(diǎn)A作AE⊥PB于點(diǎn)E,在Rt△PAE中,已知∠APE,AP的值,根據(jù)三角函數(shù)可將AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根據(jù)勾股定理可將AB的值求出;
求PD的值有兩種解法,解法一:可將△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△P'AB,可得△PAD≌△P'AB,求PD長(zhǎng)即為求P′B的長(zhǎng),在Rt△AP′P中,可將PP′的值求出,在Rt△PP′B中,根據(jù)勾股定理可將P′B的值求出;
解法二:過點(diǎn)P作AB的平行線,與DA的延長(zhǎng)線交于F,交PB于G,在Rt△AEG中,可求出AG,EG的長(zhǎng),進(jìn)而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根據(jù)勾股定理可將PD的值求出;
(2)將△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得到△P'AB,PD的最大值即為P'B的最大值,故當(dāng)P'、P、B三點(diǎn)共線時(shí),P'B取得最大值,根據(jù)P'B=PP'+PB可求P'B的最大值,此時(shí)∠APB=180°-∠APP'=135°.
(1)①
如圖,作AE⊥PB于點(diǎn)E,
∵△APE中,∠APE=45°,PA=,
∴AE=PE=×=1,
∵PB=4,∴span>BE=PB﹣PE=3,
在Rt△ABE中,∠AEB=90°,
∴AB==.
②解法一:
如圖,因?yàn)樗倪呅?/span>ABCD為正方形,可將
△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△P'AB,
可得△PAD≌△P'AB,PD=P'B,PA=P'A.
∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°
∴PP′=PA=2,
∴PD=P′B===;
解法二:
如圖,過點(diǎn)P作AB的平行線,與DA的延長(zhǎng)線交于F,與DA的
延長(zhǎng)線交PB于G.
在Rt△AEG中,
可得AG===,EG=,PG=PE﹣EG=.
在Rt△PFG中,
可得PF=PGcos∠FPG=PGcos∠ABE=,FG=.
在Rt△PDF中,可得,
PD===.
(2)如圖所示,
將△PAD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°
得到△P'AB,PD的最大值即為P'B的最大值,
∵△P'PB中,P'B<PP'+PB,PP′= PA=2,PB=4,
且P、D兩點(diǎn)落在直線AB的兩側(cè),
∴當(dāng)P'、P、B三點(diǎn)共線時(shí),P'B取得最大值(如圖)
此時(shí)P'B=PP'+PB=6,即P'B的最大值為6.
此時(shí)∠APB=180°﹣∠APP'=135度.
考查綜合應(yīng)用解直角三角形、直角三角形性質(zhì),進(jìn)行邏輯推理能力和運(yùn)算能力,在解題過程中通過添加輔助線,確定P′B取得最大值時(shí)點(diǎn)P′的位置.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AD,BD是⊙O的弦,BC是⊙O的切線,切點(diǎn)為B,OC∥AD,BA,CD的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:DC是⊙O的切線;
(2)若⊙O半徑為4,∠OCE=30°,求△OCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=(m-2)x2+(m+3)x+m+2的圖象過點(diǎn)(0,5)
(1)求m的值,并寫出二次函數(shù)的表達(dá)式;
(2)求出二次函數(shù)圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次羽毛球賽中,甲運(yùn)動(dòng)員在離地面米的P點(diǎn)處發(fā)球,球的運(yùn)動(dòng)軌跡PAN看作一個(gè)拋物線的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),其高度為3米,離甲運(yùn)動(dòng)員站立地點(diǎn)O的水平距離為5米,球網(wǎng)BC離點(diǎn)O的水平距離為6米,以點(diǎn)O為原點(diǎn)建立如圖所示的坐標(biāo)系,乙運(yùn)動(dòng)員站立地點(diǎn)M的坐標(biāo)為(m,0).
(1)求拋物線的解析式(不要求寫自變量的取值范圍);
(2)求羽毛球落地點(diǎn)N離球網(wǎng)的水平距離(即NC的長(zhǎng));
(3)乙原地起跳后可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨颍?/span>m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=90°,AB=AD,CB=CD,一個(gè)以點(diǎn)C為頂點(diǎn)的45°角繞點(diǎn)C旋轉(zhuǎn),角的兩邊與BA,DA交于點(diǎn)M,N,與BA,DA的延長(zhǎng)線交于點(diǎn)E,F,連接AC.
(1)在∠FCE旋轉(zhuǎn)的過程中,當(dāng)∠FCA=∠ECA時(shí),如圖1,求證:AE=AF;
(2)在∠FCE旋轉(zhuǎn)的過程中,當(dāng)∠FCA≠∠ECA時(shí),如圖2,如果∠B=30°,CB=2,用等式表示線段AE,AF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,AB>AC,點(diǎn)D,E分別在邊AB,AC上,且DE∥BC,若AD=2,AE=,則的值是 ;
(2)如圖2,在(1)的條件下,將△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)一定的角度,連接CE和BD,的值變化嗎?若變化,請(qǐng)說明理由;若不變化,請(qǐng)求出不變的值;
(3)如圖3,在四邊形ABCD中,AC⊥BC于點(diǎn)C,∠BAC=∠ADC=θ,且tanθ=,當(dāng)CD=6,AD=3時(shí),請(qǐng)直接寫出線段BD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.
(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線l:y=﹣x2+bx+c(b,c為常數(shù)),其頂點(diǎn)E在正方形ABCD內(nèi)或邊上,已知點(diǎn)A(1,2),B(1,1),C(2,1).
(1)直接寫出點(diǎn)D的坐標(biāo)_____________;
(2)若l經(jīng)過點(diǎn)B,C,求l的解析式;
(3)設(shè)l與x軸交于點(diǎn)M,N,當(dāng)l的頂點(diǎn)E與點(diǎn)D重合時(shí),求線段MN的值;當(dāng)頂點(diǎn)E在正方形ABCD內(nèi)或邊上時(shí),直接寫出線段MN的取值范圍;
(4)若l經(jīng)過正方形ABCD的兩個(gè)頂點(diǎn),直接寫出所有符合條件的c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)以“賞中華詩詞、尋文化基因、品生活之美”為基本宗旨舉辦首屆《詩詞大會(huì)》,九年級(jí)2班的馬小梅晉級(jí)總決賽,比賽過程分兩個(gè)環(huán)節(jié),參賽選手須在每個(gè)環(huán)節(jié)中各選擇一道題目.
第一環(huán)節(jié):橫掃千軍、你說我猜、初級(jí)飛花令,(分別用)表示;
第二環(huán)節(jié):出口成詩、飛花令、超級(jí)飛花令、詩詞接龍(分別用表示).
(1)請(qǐng)用畫樹狀圖或列表的方法表示馬小梅參加總決賽抽取題目的所有可能結(jié)果;
(2)求馬小梅參加總決賽抽取題目都是飛花令題目(初級(jí)飛花令、飛花令、超級(jí)飛花令)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com