(2007•包頭)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3,4,以AC為直徑作圓與斜邊AB交于點D,則AD=   
【答案】分析:根據(jù)勾股定理求得AB的長,再根據(jù)切割線定理解答.
解答:解:∵AC=3,BC=4,
∴AB===5;
∵BC2=BD•BA,
∴42=BD•5,
∴BD=,
∴AD=AB-BD=5-=
點評:此題主要考查切割線定理的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2007•包頭)如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.
(1)求證:CD是⊙O切線;
(2)若⊙O的直徑為4,AD=3,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圓》(12)(解析版) 題型:解答題

(2007•包頭)如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.
(1)求證:CD是⊙O切線;
(2)若⊙O的直徑為4,AD=3,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《圓》(02)(解析版) 題型:選擇題

(2007•包頭)如圖,四邊形ABCD內(nèi)接于⊙O,它的對角線把四個內(nèi)角分成八個角,其中相等的角有( )

A.2對
B.4對
C.6對
D.8對

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《三角形》(09)(解析版) 題型:填空題

(2007•包頭)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3,4,以AC為直徑作圓與斜邊AB交于點D,則AD=   

查看答案和解析>>

同步練習冊答案