如圖,A、B為∠COD的邊OC、OD上的點(diǎn),請你用尺規(guī)作圖的方法在∠COD的平分線上找一點(diǎn)P,并且使得它到A、B的距離相等.(保留作圖痕跡,不要求寫作法)

解:如圖.

分析:此題應(yīng)分成兩步來作,①首先作∠COD的角平分線,②連接AB,作AB的垂直平分線;那么∠COD的角平分線與AB中垂線的交點(diǎn)即為求作的P點(diǎn).
點(diǎn)評(píng):此題主要考查了:“作已知角的角平分線”、“作已知線段的垂直平分線”兩種尺規(guī)基本作圖方法,并要求熟練掌握線段垂直平分線的性質(zhì),難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,OB平分∠CBA,CO平分∠ACB,且MN∥BC,設(shè)AB=12,BC=24,AC=18,則△AMN的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,在以O(shè)為圓心的兩個(gè)同心圓中,AB經(jīng)過圓心O,且與小圓相交于點(diǎn)A、與大圓相交于點(diǎn)B.小圓的切線AC與大圓相交于點(diǎn)D,且CO平分∠ACB.
(1)試判斷BC所在直線與小圓的位置關(guān)系,并說明理由;
(2)試判斷線段AC、AD、BC之間的數(shù)量關(guān)系,并說明理由;
(3)若AB=8cm,BC=10cm,求大圓與小圓圍成的圓環(huán)的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,AB、AC為⊙O的弦,連接CO、BO并延長分別交弦AB、AC于點(diǎn)E、F,∠B=∠C.
求證:CE=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察發(fā)現(xiàn)

如圖1,⊙O的半徑為1,點(diǎn)P為⊙O外一點(diǎn),PO=2,在⊙O上找一點(diǎn)M,使得PM最長.
作法如下:作射線PO交⊙O于點(diǎn)M,則點(diǎn)M就是所求的點(diǎn),此時(shí)PM=
3
3

請說明PM最長的理由.
(2)實(shí)踐運(yùn)用
如圖2,在等邊三角形 ABC中,AB=2,以AB為斜邊作直角三角形AMB,使CM最長.
作法如下:以AB為直徑畫⊙O,作射線CO交⊙O右側(cè)于點(diǎn)M,則△AMB即為所求.請按上述方法用三角板和圓規(guī)畫出圖形,并求出CM的長度.
(3)拓展延伸
如圖3,在周長為m的任意形狀的△ABC中,分別以AB、AC為斜邊作直角三角形AMB,直角三角形ANC,使得線段MN最長,用尺規(guī)畫出圖形,此時(shí)MN=
0.5m
0.5m
.(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BO平分∠ABC,CO平分∠ACB,過點(diǎn)O作MN∥BC,分別交AB、AC于點(diǎn)M、N,若AB=12,△AMN的周長為29,則AC=
17
17

查看答案和解析>>

同步練習(xí)冊答案