【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點,點C、B關于拋物線的對稱軸對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的表達式;
(2)直接寫出點C的坐標,并求出△ABC的面積;
(3)點P是拋物線上一動點,且位于第四象限,當△ABP的面積為6時,求出點P的坐標;
(4)若點M在直線BH上運動,點N在x軸上運動,當以點C、M、N為頂點的三角形為等腰直角三角形時,請直接寫出此時△CMN的面積.
【答案】
(1)
解:把點A(4,0),B(1,3)代入拋物線y=ax2+bx中,
得 解得: ,
∴拋物線表達式為:y=﹣x2+4x;
(2)
解:點C的坐標為(3,3),
又∵點B的坐標為(1,3),
∴BC=2,
∴S△ABC= ×2×3=3;
(3)
解:過P點作PD⊥BH交BH于點D,
設點P(m,﹣m2+4m),
根據(jù)題意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,
∴S△ABP=S△ABH+S四邊形HAPD﹣S△BPD,
6= ×3×3+ (3+m﹣1)(m2﹣4m)﹣ (m﹣1)(3+m2﹣4m),
∴3m2﹣15m=0,
m1=0(舍去),m2=5,
∴點P坐標為(5,﹣5).
(4)
解:以點C、M、N為頂點的三角形為等腰直角三角形時,分三類情況討論:
①以點M為直角頂點且M在x軸上方時,如圖2,CM=MN,∠CMN=90°,
則△CBM≌△MHN,
∴BC=MH=2,BM=HN=3﹣2=1,
∴M(1,2),N(2,0),
由勾股定理得:MC= = ,
∴S△CMN= × × = ;
②以點M為直角頂點且M在x軸下方時,如圖3,作輔助線,構建如圖所示的兩直角三角形:Rt△NEM和Rt△MDC,
得Rt△NEM≌Rt△MDC,
∴EM=CD=5,MD=ME=2,
由勾股定理得:CM= = ,
∴S△CMN= × × = ;
③以點N為直角頂點且N在y軸左側(cè)時,如圖4,CN=MN,∠MNC=90°,作輔助線,
同理得:CN= = ,
∴S△CMN= × × =17;
④以點N為直角頂點且N在y軸右側(cè)時,作輔助線,如圖5,同理得:CN= = ,
∴S△CMN= × × =5;
⑤以C為直角頂點時,不能構成滿足條件的等腰直角三角形;
綜上所述:△CMN的面積為: 或 或17或5.
【解析】本題是二次函數(shù)的綜合題,考查了利用待定系數(shù)法求二次函數(shù)的表達式,考查了等腰直角三角形和全等三角形的判定和性質(zhì);本題的一般思路為:①根據(jù)函數(shù)的表達式設出點的坐標,利用面積公式直接表示或求和或求差列式,求出該點的坐標;②利用等腰直角三角形的兩直角邊相等,構建兩直角三角形全等,再利用全等性質(zhì)與點的坐標結(jié)合解決問題.(1)利用待定系數(shù)法求二次函數(shù)的表達式;(2)根據(jù)二次函數(shù)的對稱軸x=2寫出點C的坐標為(3,3),根據(jù)面積公式求△ABC的面積;(3)因為點P是拋物線上一動點,且位于第四象限,設出點P的坐標(m,﹣m2+4m),利用差表示△ABP的面積,列式計算求出m的值,寫出點P的坐標;(4)分別以點C、M、N為直角頂點分三類進行討論,利用全等三角形和勾股定理求CM或CN的長,利用面積公式進行計算.
【考點精析】關于本題考查的等腰直角三角形,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】已知點P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)y= 圖象交于C,D兩點(點C在第二象限內(nèi)),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若 = ,則b的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】青海新聞網(wǎng)訊:2016年2月21日,西寧市首條綠道免費公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個公共自行車站點、配置720輛公共自行車.今后將逐年增加投資,用于建設新站點、配置公共自行車.預計2018年將投資340.5萬元,新建120個公共自行車站點、配置2205輛公共自行車.
(1)請問每個站點的造價和公共自行車的單價分別是多少萬元?
(2)請你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE、BE分別交于點G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④S△ABC=4S△ADF . 其中正確的有( )
A.1個
B.2 個
C.3 個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進甲、乙兩種商品,乙商品的單價是甲商品單價的2倍,購買240元甲商品的數(shù)量比購買300元乙商品的數(shù)量多15件,求兩種商品單價各為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解家長關注孩子成長方面的狀況,學校開展了針對學生家長的“您最關心孩子哪方面成長”的主題調(diào)查,調(diào)查設置了“健康安全”、“日常學習”、“習慣養(yǎng)成”、“情感品質(zhì)”四個項目,并隨機抽取甲、乙兩班共100位學生家長進行調(diào)查,根據(jù)調(diào)查結(jié)果,繪制了如圖不完整的條形統(tǒng)計圖.
(1)補全條形統(tǒng)計圖.
(2)若全校共有3600位學生家長,據(jù)此估計,有多少位家長最關心孩子“情感品質(zhì)”方面的成長?
(3)綜合以上主題調(diào)查結(jié)果,結(jié)合自身現(xiàn)狀,你更希望得到以上四個項目中哪方面的關注和指導?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E、F分別在邊CD、BC上,且DC=3DE=3a.將矩形沿直線EF折疊,使點C恰好落在AD邊上的點P處,則FP= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,BD是它的一條對角線,過A、C兩點作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N.
(1)求證:四邊形CMAN是平行四邊形.
(2)已知DE=4,F(xiàn)N=3,求BN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結(jié)論:
①b2>4ac;②2a+b=0;③a+b+c>0;④若點B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點,則y1<y2 ,
其中正確結(jié)論是( )
A.②④
B.①④
C.①③
D.②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com