如圖①,M、N點分別在等邊三角形的BC、CA邊上,且BM=CN,AM、BN交于點Q.
(1)求證:∠BQM=60°;
(2)如圖②,如果點M、N分別移動到BC、CA的延長線上,其它條件不變,(1)中的結(jié)論是否仍然成立?若成立,給予證明;若不成立,說明理由.
(1)證明:∵△ABC為等邊三角形,
∴AB=BC,∠ABC=∠C=60°,
在△ABM和△BCN中
AB=BC
∠ABM=∠C
BM=CN
,
∴△ABM≌△BCN,
∴∠BAM=∠CBN,
∵∠BQM=∠ABQ+∠BAQ,
∴∠BQM=∠ABQ+∠QBM=∠ABM=60°;

(2)(1)中的結(jié)論仍然成立.理由如下:
與(1)的證明方法一樣可證明△ABM≌△BCN,
∴∠M=∠N,
∵∠BQA=∠N+∠NAQ,∠BCA=∠M+∠CAM,
而∠NAQ=∠CAM,
∴∠BQA=∠BCA=60°,
即∠BQM=60°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

上午8時,一條船從海島A出發(fā),以15海里/時的速度向正北航行,10時到達海島B處,從A,B望燈塔C,測得∠NAC=43°,∠NBC=86°,問海島B與燈塔C相距多遠?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知BD為等邊△ABC的中線,DE⊥AB于點E,若BC=3,則AE=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在邊長為1的等邊三角形內(nèi)任意放一些點,要使得至少存在2個點之間的距離不超過
1
n
,那么至少應該放幾個點( 。
A.n2+1B.2n+1C.2nD.n+1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖①,△ABC是等邊三角形,D是AB上一點,以CD為一邊向上作等邊△ECD,連接AE,求證:∠CAE=∠CBA.
(2)在上題(1)中,當D點在AB的延長線上時,其他條件不變,如圖②所示,請你補畫出題意的圖形,(1)的結(jié)論還成立嗎?若成立,請給予證明;若不成立,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,△ABC以點A旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)60°得到△AB′C′,則△ABB′是______三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

數(shù)學課上,李老師出示了如下框中的題目.

小明與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與DB的大小關系,請你直接寫出結(jié)論:AE______DB(填“>”,“<”或“=”).

(2)一般情況,證明結(jié)論:
如圖2,過點E作EFBC,交AC于點F.(請你繼續(xù)完成對以上問題(1)中所填寫結(jié)論的證明)
(3)拓展結(jié)論,設計新題:
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,則CD的長為______(請直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在等邊△ABC中,BD平分∠ABC,BD=BF,則∠CDF的度數(shù)是(  )
A.10°B.15°C.20°D.25°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,△ABC為等邊三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,則四個結(jié)論正確的是( 。
①點P在∠A的平分線上;
②AS=AR;
③QPAR;
④△BRP≌△QSP.
A.全部正確B.僅①和②正確C.僅②③正確D.僅①和③正確

查看答案和解析>>

同步練習冊答案