精英家教網 > 初中數學 > 題目詳情
如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點,與y軸交于點C,其中點A的坐標為(-2,0);直線x=1與拋物線交于點E,與x軸交于點F,且45°≤∠FAE≤60度.
(1)用b表示點E的坐標;
(2)求實數b的取值范圍;
(3)請問△BCE的面積是否有最大值?若有,求出這個最大值;若沒有,請說明理由.

【答案】分析:(1)求E點的坐標關鍵是求出E的縱坐標.可將A點坐標代入拋物線的解析式中即可得出b,c的關系式.然后將E點的橫坐標代入拋物線的解析式中即可得出E點的坐標.
(2)根據(1)的E點坐標即可的EF的長,在直角三角形AEF中,不難求出AF的長,可根據AF的長和∠FAE度數的取值范圍即可求出EF的取值范圍,即b的取值范圍.
(3)由于三角形BCE的面積無法直接求出,因此可根據△BCE的面積=梯形OCEF的面積+△EFB的面積-△BOC的面積來得出關于△BCE的面積和b的函數關系式,根據函數的性質以及b的取值范圍即可求出△BCE的面積的最大值.
解答:解:(1)∵拋物線y=x2+bx+c過A(-2,0),
∴c=2b-4
∵點E在拋物線上,
∴y=1+b+c=1+2b-4+b=3b-3,
∴點E的坐標為(1,3b-3).

(2)由(1)得EF=3-3b,
∵45°≤∠FAE≤60°,AF=3,
∴1-≤b≤0.

(3)△BCE的面積有最大值,
∵y=x2+bx+c的對稱軸為x=-,A(-2,0),
∴點B的坐標為(2-b,0),
由(1)得C(0,2b-4),
而S△BCE=S梯形OCEF+S△EFB-S△OCB=(OC+EF)•OF+EF•FB-OB•OC
=[(4-2b)+(3-3b)]×1+(3-3b)(1-b)-(2-b)•(4-2b)
=(b2-3b+2),
∵y=(b2-3b+2)的對稱軸是b=,1-≤b≤0
∴當b=1-時,S△BCE取最大值,
其最大值為[(1-2-3(1-)+2]=
點評:本題主要考查了二次函數的應用,綜合性較強,考查學生數形結合的數學思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線y=x2+4x與x軸分別相交于點B、O,它的頂點為A,連接AB,AO.
(1)求點A的坐標;
(2)以點A、B、O、P為頂點構造直角梯形,請求一個滿足條件的頂點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

16、如圖,拋物線y=-x2+2x+m(m<0)與x軸相交于點A(x1,0)、B(x2,0),點A在點B的左側.當x=x2-2時,y
0(填“>”“=”或“<”號).

查看答案和解析>>

科目:初中數學 來源: 題型:

已知如圖,拋物線y=x2+(k2+1)x+k+1的對稱軸是直線x=-1,且頂點在x軸上方.設M是直線x=-1左側拋物線上的一動點,過點M作x軸的垂線MG,垂足為G,過點M作直線x=-1的垂線MN,垂足為N,直線x=-1與x軸的交于H點,若M點的橫坐標為x,矩形MNHG的周長為l.
(1)求出k的值;
(2)寫出l關于x的函數解析式;
(3)是否存在點M,使矩形MNHG的周長最?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•揚州)如圖,拋物線y=x2-2x-8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應的函數關系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設M點的橫坐標為m,且0<m<3.試比較線段MN與PQ的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標;
(2)求拋物線頂點M關于x軸對稱的點M′的坐標,并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習冊答案