(2013•龍灣區(qū)一模)如圖,△DEF是由△ABC通過平移得到,且點(diǎn)B,E,C,F(xiàn)在同一條直線上.若BF=14,EC=6.則BE的長(zhǎng)度是( 。
分析:根據(jù)平移的性質(zhì)可得BE=CF,然后列式其解即可.
解答:解:∵△DEF是由△ABC通過平移得到,
∴BE=CF,
∴BE=
1
2
(BF-EC),
∵BF=14,EC=6,
∴BE=
1
2
(14-6)=4.
故選B.
點(diǎn)評(píng):本題考查了平移的性質(zhì),根據(jù)對(duì)應(yīng)點(diǎn)間的距離等于平移的長(zhǎng)度得到BE=CF是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)在數(shù)-3,0,1,3中,其中最小的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)已知反比例函數(shù)y=
6
x
,下列各點(diǎn)在該函數(shù)圖象上的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)如圖,已知AB∥CD,直線EF分別交AB,CD于點(diǎn) E,F(xiàn),F(xiàn)G平分∠EFD交AB于點(diǎn)G,若∠EFD=70°,則∠EGF的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍灣區(qū)一模)二次函數(shù)y=-
1
2
x2+
3
2
x+2
的圖象如圖所示,當(dāng)-1≤x≤0時(shí),該函數(shù)的最大值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案