如圖1,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a>0)的圖像頂點(diǎn)為D,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、B,點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B的坐標(biāo)為(3,0),OB=OC,tan∠ACO=.
【小題1】求這個(gè)二次函數(shù)的解析式;
【小題2】若平行于x軸的直線與該拋物線交于點(diǎn)M、N,且以MN為直徑的圓與x軸相切,求該圓的半徑長度;Com]
【小題3】如圖2,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上的一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△AGP的面積最大?求此時(shí)點(diǎn)P的坐標(biāo)和△AGP的最大面積.
【小題1】由OC=OB=3,知C
連接AC,在Rt△AOC中,OA=OC×tan∠ACO=,故A
設(shè)所求二次函數(shù)的表達(dá)式為
將C代入得,解得,
∴這個(gè)二次函數(shù)的表達(dá)式為。
【小題1】①當(dāng)直線MN在x軸上方時(shí),設(shè)所求圓的半徑為R(R>0),設(shè)M在N的左側(cè),
∵所求圓的圓心在拋物線的對(duì)稱軸上,
∴N(R+1,R)代入中得
,
解得 (舍)
②當(dāng)直線MN在x軸下方時(shí),設(shè)所求圓的半徑為,由①可知N,代入拋物線方程可得 (舍)。
【小題1】
解析【小題1】根據(jù)已知條件,易求得C、A的坐標(biāo),可用待定系數(shù)法求出拋物線的解析式;
【小題1】根據(jù)拋物線和圓的對(duì)稱性,知圓心必在拋物線的對(duì)稱軸上,由于該圓與x軸相切,可用圓的半徑表示出M、N的坐標(biāo),將其入拋物線的解析式中,即可求出圓的半徑;(需注意的是圓心可能在x軸上方,也可能在x軸下方,需要分類討論)
【小題1】易求得AC的長,由于AC長為定值,當(dāng)P到直線AG的距離最大時(shí),△APG的面積最大.可過P作y軸的平行線,交AG于Q;設(shè)出P點(diǎn)坐標(biāo),根據(jù)直線AG的解析式可求出Q點(diǎn)坐標(biāo),也就求出PQ的長,進(jìn)而可得出關(guān)于△APG的面積與P點(diǎn)坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)可求出△APG的最大面積及P點(diǎn)的坐標(biāo),根據(jù)此時(shí)△APG的面積和AG的長,即可求出P到直線AC的最大距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
2 |
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059
學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)
(1)按照這種規(guī)定填寫下表:
(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).
(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題
閱讀下面的材料:
小明在研究中心對(duì)稱問題時(shí)發(fā)現(xiàn):
如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.
如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.
(1)請(qǐng)?jiān)趫D2中畫出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說明P、、三點(diǎn)共線之外,還需證明;
(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com