(2002•浙江)二次函數(shù)y=x2-2x+3的最小值為( )
A.4
B.2
C.l
D.-l
【答案】分析:先用配方法把函數(shù)化為頂點(diǎn)式的形式,再根據(jù)其解析式即可求解.
解答:解:∵二次函數(shù)y=x2-2x+3可化為y=(x-1)2+2,
∴當(dāng)x=1時(shí),二次函數(shù)y=x2-2x+3的最小值為2.
故選B.
點(diǎn)評(píng):求二次函數(shù)的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•浙江)以x為自變量的二次函數(shù)y=-x2+2x+m,它的圖象與y軸交于點(diǎn)C(0,3),與x軸交于點(diǎn)A、B,點(diǎn)A在點(diǎn)B的左邊,點(diǎn)O為坐標(biāo)原點(diǎn),
(1)求這個(gè)二次函數(shù)的解析式及點(diǎn)A,點(diǎn)B的坐標(biāo),畫出二次函數(shù)的圖象;
(2)在x軸上是否存在點(diǎn)Q,在位于x軸上方部分的拋物線上是否存在點(diǎn)P,使得以A,P,Q三點(diǎn)為頂點(diǎn)的三角形與△AOC相似(不包含全等)?若存在,請(qǐng)求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省臺(tái)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•浙江)以x為自變量的二次函數(shù)y=-x2+2x+m,它的圖象與y軸交于點(diǎn)C(0,3),與x軸交于點(diǎn)A、B,點(diǎn)A在點(diǎn)B的左邊,點(diǎn)O為坐標(biāo)原點(diǎn),
(1)求這個(gè)二次函數(shù)的解析式及點(diǎn)A,點(diǎn)B的坐標(biāo),畫出二次函數(shù)的圖象;
(2)在x軸上是否存在點(diǎn)Q,在位于x軸上方部分的拋物線上是否存在點(diǎn)P,使得以A,P,Q三點(diǎn)為頂點(diǎn)的三角形與△AOC相似(不包含全等)?若存在,請(qǐng)求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年浙江省寧波市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•浙江)二次函數(shù)y=x2-2x+3的最小值為( )
A.4
B.2
C.l
D.-l

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)復(fù)習(xí)模擬試卷(07)(解析版) 題型:解答題

(2002•浙江)已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案