如圖,直角三角形ABC中,∠ACB=90°,AB=10,BC=6,在線段AB上取一點D,作DF⊥AB交AC于點F.現(xiàn)將△ADF沿DF折疊,使點A落在線段DB上,對應(yīng)點記為;AD的中點E的對應(yīng)點記為.若,則AD=__________.
.

試題分析: 利用勾股定理列式求出AC,設(shè)AD=2x,得到AE=DE=DE1=A1E1=x,然后求出BE1,再利用相似三角形對應(yīng)邊成比例列式求出DF,然后利用勾股定理列式求出E1F,然后根據(jù)相似三角形對應(yīng)邊成比例列式求解得到x的值,從而可得AD的值.
試題解析:∵∠ACB=90°,AB=10,BC=6,∴AC=,設(shè)AD=,∵點E為AD的中點,將△ADF沿DF折疊,點A對應(yīng)點記為A1,點E的對應(yīng)點為E1,∴AE=DE=DE1=A1E1=,∵DF⊥AB,∠ACB=90°,∠A=∠A,∴△ABC∽△AFD,∴=,即,解得DF=,在Rt△DE1F中,=,又∵BE1=AB﹣AE1=10﹣3x,△E1FA1∽△E1BF,∴,∴,即,解得,∴AD的長為.故答案為:
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示.某校計劃將一塊形狀為銳角三角形ABC的空地進行生態(tài)環(huán)境改造.已知△ABC的邊BC長120米,高AD長80米.學校計劃將它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如圖).其中矩形EFGH的一邊EF在邊BC上.其余兩個頂點H、G分別在邊AB、AC上.現(xiàn)計劃在△AHG上種草,每平方米投資6元;在△BHE、△FCG上都種花,每平方米投資10元;在矩形EFGH上興建愛心魚池,每平方米投資4元.

(1)當FG長為多少米時,種草的面積與種花的面積相等?
(2)當矩形EFGH的邊FG為多少米時,△ABC空地改造總投資最小,最小值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,D、E兩點分別在AC、AB兩邊上,∠ABC=∠ADE,AB=7,AD=3,AE=2.7,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一天晚上,黎明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立時身高AM與影子長AE正好相等;接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,E為CD上一點,聯(lián)結(jié)AE、BD,且AE、BD交于點F,若,則=_________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AC是菱形ABCD的對角線,AE=EF=FC,則SBMN :S菱形ABCD的值是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,電燈在橫桿的正上方,在燈光下的影子為,,點的距離是3m,則點的距離是( 。
A.mB.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

夏季的一天,身高為1.6m的小玲想測量一下屋前大樹的高度,她沿著樹影BA由B到A走去,當走到C點時,她的影子頂端正好與樹的影子頂端重合,測得BC=3.2m,CA=0.8m,于是得出樹的高度為(  )
A.8mB.6.4mC.4.8mD.10m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,………按這樣的規(guī)律進行下去,第2012個正方形的面積為
A.B.C.D.

查看答案和解析>>

同步練習冊答案