若等腰梯形兩底長(zhǎng)度和是10,兩底差是4,一底角為45°,則其面積為
 
分析:首先作等腰梯形的兩條高,易得四邊形AEFD是矩形,Rt△ABE≌Rt△DCF;根據(jù)題意兩底差是4,可得BE=CF=2,又由一底角為45°,可得△ABE是等腰直角三角形,即可得AE=BE=2;根據(jù)梯形的面積公式即可求得.
解答:精英家教網(wǎng)解:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,
∴AE∥DF,∠AEB=∠DFC=90°,
∵AD∥BC,
∴四邊形AEFD是矩形,
∴AD=EF,AE=DF,
∵AB=CD,
∴Rt△ABE≌Rt△DCF(HL),
∴BE=CF,
∵BC-AD=4,
∴BE=CF=2,
∵∠B=45°,
∴AE=BE=2,
∴S梯形ABCD=
1
2
(AD+BC)•AE=
1
2
×10×2=10.
∴其面積為10.
點(diǎn)評(píng):此題考查了等腰梯形的性質(zhì)、矩形的判定與性質(zhì)、全等三角形的判定與性質(zhì)等知識(shí).解此題的關(guān)鍵是注意過梯形的兩個(gè)頂點(diǎn)作梯形的兩條高是解答梯形題目中的常見輔助線.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長(zhǎng)度之比等于大線段AC與線段AB的長(zhǎng)度之比,即
CB
AC
=
AC
AB
=
5
-1
2
=0.61803398874989
.這種分割稱為黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn).類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點(diǎn)為腰的黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你說明D為腰AB的黃金分割點(diǎn)的理由.
(2)若腰和上底相等,對(duì)角線和下底相等的等腰梯形叫作黃金梯形,其對(duì)角線的交點(diǎn)為對(duì)角線的黃金分割點(diǎn).如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點(diǎn).
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a、b、c.若D是AB的黃金分割點(diǎn),那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長(zhǎng)度之比等于大線段AC與線段AB的長(zhǎng)度之比,即數(shù)學(xué)公式.這種分割稱為黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn).類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點(diǎn)為腰的黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你說明D為腰AB的黃金分割點(diǎn)的理由.
(2)若腰和上底相等,對(duì)角線和下底相等的等腰梯形叫作黃金梯形,其對(duì)角線的交點(diǎn)為對(duì)角線的黃金分割點(diǎn).如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點(diǎn).
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a、b、c.若D是AB的黃金分割點(diǎn),那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

若等腰梯形兩底長(zhǎng)度和是10,兩底差是4,一底角為45°,則其面積為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年北京市大興區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

我們知道:將一條線段AB分割成大小兩條線段AC、CB,若小線段CB與大線段AC的長(zhǎng)度之比等于大線段AC與線段AB的長(zhǎng)度之比,即.這種分割稱為黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn).類似地我們可以定義,頂角為36°的等腰三角形叫黃金三角形,其底與腰之比為黃金數(shù),底角平分線與腰的交點(diǎn)為腰的黃金分割點(diǎn).
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點(diǎn)D,請(qǐng)你說明D為腰AB的黃金分割點(diǎn)的理由.
(2)若腰和上底相等,對(duì)角線和下底相等的等腰梯形叫作黃金梯形,其對(duì)角線的交點(diǎn)為對(duì)角線的黃金分割點(diǎn).如圖2,AD‖BC,AB=AD=DC,AC=BD=BC,試說明O為AC的黃金分割點(diǎn).
(3)如圖3,在Rt△ABC中,∠ACB=90°,CD為斜邊AB上的高,∠A、∠B、∠ACB的對(duì)邊分別為a、b、c.若D是AB的黃金分割點(diǎn),那么a、b、c之間的數(shù)量關(guān)系是什么并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案