如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.
(1)求點P到海岸線l的距離;
(2)小船從點P處沿射線AP的方向航行一段時間后,到點C處,此時,從B測得小船在北偏西15°的方向.求點C與點B之間的距離.(上述兩小題的結果都保留根號)
【答案】分析:(1)過點P作PD⊥AB于點D,設PD=xkm,先解Rt△PBD,用含x的代數(shù)式表示BD,再解Rt△PAD,用含x的代數(shù)式表示AD,然后根據(jù)BD+AD=AB,列出關于x的方程,解方程即可;
(2)過點B作BF⊥AC于點F,先解Rt△ABF,得出BF=AB=1km,再解Rt△BCF,得出BC=BF=km.
解答:解:(1)如圖,過點P作PD⊥AB于點D.設PD=xkm.
在Rt△PBD中,∠BDP=90°,∠PBD=90°-45°=45°,
∴BD=PD=xkm.
在Rt△PAD中,∠ADP=90°,∠PAD=90°-60°=30°,
∴AD=PD=xkm.
∵BD+AD=AB,
∴x+x=2,
x=-1,
∴點P到海岸線l的距離為(-1)km;

(2)如圖,過點B作BF⊥AC于點F.
在Rt△ABF中,∠AFB=90°,∠BAF=30°,
∴BF=AB=1km.
在△ABC中,∠C=180°-∠BAC-∠ABC=45°.
在Rt△BCF中,∠BFC=90°,∠C=45°,
∴BC=BF=km,
∴點C與點B之間的距離為km.
點評:本題考查了解直角三角形的應用-方向角問題,難度適中.通過作輔助線,構造直角三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

作業(yè)寶如圖,在一筆直的海岸線上有A、B兩個觀測站,B在A的正東方向,AB=10千米,在某一時刻,從觀測站A測得一艘集裝箱貨船位于北偏西62.6°的C處,同時觀測站B測得改集裝箱船位于北偏西69.2°方向,問此時該集裝箱船與海岸之間距離CH約多少千米?(最后結果保留整數(shù))
(參考數(shù)據(jù):sin62.6°≈0.89,cos62.6°≈0.46,tan62.6°≈1.93,sin69.2°≈0.93,cos69.2°≈0.36,tan69.2°≈2.63)

查看答案和解析>>

同步練習冊答案