【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
【答案】(1)證明見解析;(2)四邊形EFGH是菱形;(3)四邊形EFGH是正方形.
【解析】
試題分析:(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.
(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.
(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.
試題解析:(1)證明:如圖1中,連接BD.
∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.
(2)四邊形EFGH是菱形.
證明:如圖2中,連接AC,BD.
∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.
(3)四邊形EFGH是正方形.
證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.
∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列選項(xiàng)中,具有相反意義的量( )
A. 向東走3千米與向北走3千米 B. 運(yùn)進(jìn)100千克與運(yùn)出180千克
C. 5個(gè)老人與5個(gè)小孩 D. 氣溫上升3℃與上升7℃
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=(m2-3m+2)x|m|-3是反比例函數(shù),則m的值是( ).
A.1
B.-2
C.±2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組數(shù)中,不相等的一組是( 。
A. (﹣2)3和﹣23 B. (﹣2)2和﹣22
C. (﹣2)和﹣2 D. |﹣2|3和|2|3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中東呼吸綜合征冠狀病毒(MERS)屬于冠狀病毒科,病毒粒子呈球形,直徑約為0.00000015米,那么0.00000015用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,將直線y=-2x+1的圖象向左平移2個(gè)單位,再向上平移1個(gè)單位,所得到直線的解析式是__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù)y=﹣(x﹣1)2+2的圖象,下列說(shuō)法正確的是( 。
A. 當(dāng)x=1時(shí),y有最小值2 B. 當(dāng)x=1時(shí),y有最大值2
C. 當(dāng)﹣1時(shí),y有最小值2 D. 當(dāng)x=﹣1時(shí),y有最大值2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A表示-3,在數(shù)軸上與點(diǎn)A距離5個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)為_______。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com