(2005•河北)操作示例:
對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線(xiàn)BD,EG剪開(kāi)后,可以按圖中所示的移動(dòng)方式拼接為圖1中的四邊形BNED.
從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
實(shí)踐與探究:
(1)對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N;
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線(xiàn)剪開(kāi)后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類(lèi)比圖1,用數(shù)字表示對(duì)應(yīng)的圖形);
(2)對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

【答案】分析:(1)首先證明四邊形MNED是矩形,然后依題意可證出四邊形MNED是正方形.根據(jù)勾股定理可得正方形MNED的面積.
過(guò)點(diǎn)N做NP⊥BE,然后根據(jù)全等三角形的判定求得.
(2)由上述的拼接過(guò)程可以看出:對(duì)于任意的兩個(gè)正方形都可以拼接為一個(gè)正方形,而拼接出的這個(gè)正方形可以與第三個(gè)正方形在拼接為一個(gè)正方形,所以可得出一個(gè)正方形.
解答:解:(1)①證明:由作圖的過(guò)程可知四邊形MNED是矩形.
在Rt△ADM與Rt△CDE中,
∵AD=CD,又∠ADM+∠MDC=∠CDE+∠MDC=90°,
∴DM=DE
∴四邊形MNED是正方形.
∵DE2=CD2+CE2=a2+b2,
∴正方形MNED的面積為a2+b2;
②過(guò)點(diǎn)N作NP⊥BE,垂足為P,如圖
可以證明圖中6與5位置的兩個(gè)三角形全等,4與3位置的兩個(gè)三角形全等,2與1位置的兩個(gè)三角形也全等.
所以將6放到5的位置,4放到3的位置,2放到1的位置,恰好拼接為正方形MNED.

(2)答:能.
理由是:由上述的拼接過(guò)程可以看出:對(duì)于任意的兩個(gè)正方形都可以拼接為一個(gè)正方形,而拼接出的這個(gè)正方形可以與第三個(gè)正方形在拼接為一個(gè)正方形,依此類(lèi)推.由此可知:對(duì)于n個(gè)任意的正方形,可以通過(guò)(n-1)次拼接,得到一個(gè)正方形.
點(diǎn)評(píng):本題考查的是正方形的性質(zhì)以及正方形的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(13)(解析版) 題型:解答題

(2005•河北)工人師傅為了檢測(cè)該廠(chǎng)生產(chǎn)的一種鐵球的大小是否符合要求,設(shè)計(jì)了一個(gè)如圖1所示的工件槽,其中工件槽的兩個(gè)底角均為90°,尺寸如圖(單位:cm).將形狀規(guī)則的鐵球放入槽內(nèi)時(shí),若同時(shí)具有圖1所示的A,B,E三個(gè)接觸點(diǎn),該球的大小就符合要求.圖2是過(guò)球心O及A,B,E三個(gè)接觸點(diǎn)的截面示意圖.已知⊙O的直徑就是鐵球的直徑,AB是⊙O的弦,CD切⊙O于點(diǎn)E,AC⊥CD,BD⊥CD.請(qǐng)你結(jié)合圖1中的數(shù)據(jù),計(jì)算這種鐵球的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年山東省濟(jì)寧市濟(jì)寧師專(zhuān)附中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2005•河北)在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(cm)與燃燒時(shí)間x(h)的關(guān)系如圖所示.請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是______,從點(diǎn)燃到燃盡所用的時(shí)間分別是______;
(2)分別求甲、乙兩根蠟燭燃燒時(shí)y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x為何值時(shí),甲、乙兩根蠟燭在燃燒過(guò)程中的高度相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年河北省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•河北)操作示例:
對(duì)于邊長(zhǎng)為a的兩個(gè)正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線(xiàn)BD,EG剪開(kāi)后,可以按圖中所示的移動(dòng)方式拼接為圖1中的四邊形BNED.
從拼接的過(guò)程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
實(shí)踐與探究:
(1)對(duì)于邊長(zhǎng)分別為a,b(a>b)的兩個(gè)正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過(guò)點(diǎn)D作DM⊥DE,交AB于點(diǎn)M,過(guò)點(diǎn)M作MN⊥DM,過(guò)點(diǎn)E作EN⊥DE,MN與EN相交于點(diǎn)N;
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線(xiàn)剪開(kāi)后,能夠拼接為正方形MNED,請(qǐng)簡(jiǎn)略說(shuō)明你的拼接方法(類(lèi)比圖1,用數(shù)字表示對(duì)應(yīng)的圖形);
(2)對(duì)于n(n是大于2的自然數(shù))個(gè)任意的正方形,能否通過(guò)若干次拼接,將其拼接成為一個(gè)正方形?請(qǐng)簡(jiǎn)要說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年河北省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•河北)在一次蠟燭燃燒試驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是______,從點(diǎn)燃到燃盡所用的時(shí)間分別是______;
(2)分別求甲、乙兩根蠟燭燃燒時(shí)y與x之間的函數(shù)關(guān)系式;
(3)燃燒多長(zhǎng)時(shí)間時(shí),甲、乙兩根蠟燭的高度相等(不考慮都燃盡時(shí)的情況)在什么事件段內(nèi),甲蠟燭比乙蠟燭高在什么時(shí)間段內(nèi),甲蠟燭比乙蠟燭低?

查看答案和解析>>

同步練習(xí)冊(cè)答案