如圖,在△ABC中,∠ACB=90°,D是AB的中點(diǎn),過點(diǎn)B作∠CBE=∠A,BE與CD相交于點(diǎn)F,與AC相交于點(diǎn)E,
(1)求證:BE⊥CD;
(2)如果BE=CD,那么線段AC與BC之間具有怎樣的數(shù)量關(guān)系?并證明你所得到的結(jié)論.

解:(1)∵∠CBE=∠A,
∴∠CBE+∠EBA=∠A+∠EBA,即:∠CBA=∠BEC,
∵∠ACB=90°,D是AB的中點(diǎn),
∴CD=BD,
∴∠CBA=∠DCB,
∴∠DCB=∠BEC,
∵∠DCB+∠ACD=90°,
∴∠BEC+∠ACD=90°,
∴BE⊥CD;

(2)線段AC與BC之間的數(shù)量關(guān)系是(AC=2BC),
∵∠CBE=∠A,∠BCE=∠ACB,
∴△BCE∽△ACB,
,
∵BE=CD,,

分析:(1)根據(jù)角之間的等量關(guān)系及中點(diǎn)的特點(diǎn)即可得出答案;
(2)根據(jù)題意易證△BCE∽△ACB,根據(jù)相似三角形比例關(guān)系即可得出結(jié)論.
點(diǎn)評(píng):本題主要考查了直角三角形斜邊中線的性質(zhì)及相似三角形的證明及性質(zhì),難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案