圓內(nèi)接正△ABC,如圖,則∠1+∠2+∠3=    度.
【答案】分析:根據(jù)圓周角定理的推論,得∠1+∠3=∠A,再根據(jù)等邊三角形的每個(gè)內(nèi)角都是60°,從而可以得到答案.
解答:解:∵△ABC是圓內(nèi)接正三角形
∴∠1+∠3=∠A=60°
∴∠1+∠2+∠3=120°.
故答案為:120.
點(diǎn)評(píng):此題考查圓周角定理及等邊三角形的性質(zhì)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),進(jìn)行如下討論:
甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形.
乙同學(xué):我發(fā)現(xiàn)邊數(shù)是6時(shí),它也不一定是正多邊形,如圖1,△ABC是正三角形,
AD
=
BE
=
CF
,證明六邊形ADBECF的各內(nèi)角相等,但它未必是正六邊形.
丙同學(xué):我能證明,邊數(shù)是5時(shí),它是正多邊形,我想…,邊數(shù)是7時(shí),它可能也是正多邊形.
(1)請(qǐng)你說明乙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;
(2)請(qǐng)你證明,各內(nèi)角都相等的圓內(nèi)接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求精英家教網(wǎng)證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、圓內(nèi)接正△ABC,如圖,則∠1+∠2+∠3=
120
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•邯鄲一模)嘗試探究:
小張?jiān)跀?shù)學(xué)實(shí)踐活動(dòng)中,畫了一個(gè)Rt△ABC,使∠ACB=90°,BC=1,AC=2,再以B為圓心,BC為半徑畫弧交AB于點(diǎn)D,然后以A為圓心以AD長為半徑畫弧交AC于點(diǎn)E,如圖,則AE=
5
-1
5
-1
;此時(shí)小張發(fā)現(xiàn)AE2=AC•EC,請(qǐng)同學(xué)們驗(yàn)證小張的發(fā)現(xiàn)是否正確.
拓展延伸:
小張利用上圖中的線段AC及點(diǎn)E,接著構(gòu)造AE=EF=CF,連接AF,得到下圖,試完成以下問題:
①求證△ACF∽△FCE
②求∠A的度數(shù);
③求cos∠A

應(yīng)用遷移:
利用上面的結(jié)論,直接寫出:
①半徑為2的圓內(nèi)接正十邊形的邊長為
5
-1
5
-1

②邊長為2的正五邊形的對(duì)角線的長為
5
+1
5
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

圓內(nèi)接正△ABC,如圖,則∠1+∠2+∠3=________度.

查看答案和解析>>

同步練習(xí)冊(cè)答案