如圖,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于點(diǎn)E,CF∥BD.
(1)求證:△ACG≌△AFG
(2)求數(shù)學(xué)公式的值;
(3)求數(shù)學(xué)公式的值;
(4)判斷AE和DE之間的數(shù)量關(guān)系,并說(shuō)明理由.

(1)證明:∵DA平分∠BAC,
∴∠FAG=∠CAG,
∵BD⊥AD,CF∥BD,
∴CF⊥AD,
∴∠AGF=∠AGC=90°,
在△AFG和△ACG中,
∵∠FAG=∠CAG,AG=AG,∠AGF=∠AGC,
∴△AFG≌△ACG.

(2)解:∵△AFG≌△ACG,
∴AC=AF,CG=FG.
∵CF∥BD,
∴△AFG∽△ABD,
;

(3)解:∵CF∥BD,
∴△ECG∽△EBD,
;

(4)解:AE=DE.
理由:設(shè)EG=x,則ED=3x.

解得 AG=2x.
∴AE=3x=DE.
分析:(1)根據(jù)ASA證明△ACG≌△AFG;
(2)根據(jù)CF∥BD可證△AFG∽△ABD,運(yùn)用相似三角形性質(zhì)求解;
(3)可證△ECG∽△EBD,得EG:ED=CG:BD=FG:BD;
(4)綜合運(yùn)用上面結(jié)論可判定AE=DE.
點(diǎn)評(píng):此題考查相似(包括全等)三角形的判定和性質(zhì),綜合性較強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB=3AC,BD=3AE,又BD∥AC,點(diǎn)B,A,E在同一條直線上.
(1)求證:△ABD∽△CAE;
(2)如果AC=BD,AD=2
2
BD,設(shè)BD=a,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•邢臺(tái)一模)如圖,AB=3AC,AD平分∠BAC,BD⊥AD,BC交AD于點(diǎn)E,CF∥BD.
(1)求證:△ACG≌△AFG
(2)求
FG
BD
的值;
(3)求
EG
ED
的值;
(4)判斷AE和DE之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)

如圖,AB = 3AC,BD = 3AE,又BD∥AC,點(diǎn)B,A,E在同一條直線上.

(1) 求證:△ABD∽△CAE;

(2) 如果AC =BD,AD =BD,設(shè)BD = a,求BC的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分10分)
如圖,AB = 3AC,BD = 3AE,又BD∥AC,點(diǎn)B,A,E在同一條直線上.

(1) 求證:△ABD∽△CAE;
(2) 如果AC =BD,AD =BD,設(shè)BD = a,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生全國(guó)統(tǒng)一考試數(shù)學(xué)卷(山東青島) 題型:解答題

(本小題滿分10分)
如圖,AB = 3AC,BD = 3AE,又BD∥AC,點(diǎn)B,A,E在同一條直線上.

(1) 求證:△ABD∽△CAE;
(2) 如果AC =BD,AD =BD,設(shè)BD = a,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案