(2004•連云港)(1)如圖,在梯形ABCD中,AB∥CD,AB=b,CD=a,E為AD邊上的任意一點(diǎn),EF∥AB,且EF交BC于點(diǎn)F,某學(xué)生在研究這一問(wèn)題時(shí),發(fā)現(xiàn)如下事實(shí):
①當(dāng)時(shí),有
②當(dāng)時(shí),有;
③當(dāng)時(shí),有
當(dāng)時(shí),參照上述研究結(jié)論,請(qǐng)你猜想用k表示EF的一般結(jié)論,并給出證明;
(2)現(xiàn)有一塊直角梯形田地ABCD(如圖所示),其中AB∥CD,AD⊥AB,AB=310米,DC=170米,AD=70米.若要將這塊地分割成兩塊,由兩農(nóng)戶(hù)來(lái)承包,要求這兩塊地均為直角梯形,且它們的面積相等.請(qǐng)你給出具體分割方案.
【答案】分析:(1)本題可通過(guò)構(gòu)建相似三角形來(lái)求解.過(guò)點(diǎn)E作BC的平行線(xiàn)交AB于G,交CD的延長(zhǎng)線(xiàn)于H.那么四邊形HCGB就是平行四邊形,HC=BG=EF,因此HD=EF-a,AG=b-EF,那么可根據(jù)相似三角形HED和GEA得出的關(guān)于DH,AG,DE,AE的比例關(guān)系式,即可求出所求的比例關(guān)系式;
(2)可按照(1)的思路進(jìn)行求解.在A(yíng)D上取一點(diǎn)E,作EF∥AB交BC于點(diǎn)F,可先設(shè)DE:AE=k,那么可用k表示出DE和EF的長(zhǎng).由于被EF平分的兩部分面積相等,因此梯形ABCD的面積=2×梯形DEFC的面積,由此可求出梯形DEFC的面積,然后根據(jù)DE,EF的長(zhǎng),表示出梯形DEFC的面積即可得出關(guān)于k的方程,經(jīng)過(guò)解方程即可得出k的值,進(jìn)而可確定具體的分割方案.
解答:解:(1)猜想得:EF=,
證明:過(guò)點(diǎn)E作BC的平行線(xiàn)交AB于G,交CD的延長(zhǎng)線(xiàn)于H.

∵AB∥CD,
∴△AGE∽△DHE,
,
又∵EF∥AB∥CD,
∴CH=EF=GB,
∴DH=EF-a,AG=b-EF,
,可得

(2)在A(yíng)D上取一點(diǎn)E,作EF∥AB交BC于點(diǎn)F,
設(shè),
則EF=,
若S梯形DCFE=S梯形ABFE,則S梯形ABCD=2S梯形DCFE
∵梯形ABCD、DCFE為直角梯形,
×70=2××(170+)×,
化簡(jiǎn)得12k2-7k-12=0解得:,(舍去),
∴DE==30,
所以只需在A(yíng)D上取點(diǎn)E,使DE=30米,作EF∥AB(或EF⊥DA),
即可將梯形分成兩個(gè)直角梯形,且它們的面積相等.
點(diǎn)評(píng):本題考查了梯形中輔助線(xiàn)的常規(guī)作法以及相似三角形的判定等知識(shí)點(diǎn).在梯形中通過(guò)作輔助線(xiàn)來(lái)構(gòu)建平行四邊形是常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•連云港)有一個(gè)運(yùn)算裝置,當(dāng)輸入值為x時(shí),其輸出值為y,且y是x的二次函數(shù),已知輸入值為-2,0,1時(shí),相應(yīng)的輸出值分別為5,-3,-4.
(1)求此二次函數(shù)的解析式;
(2)在所給的坐標(biāo)系中畫(huà)出這個(gè)二次函數(shù)的圖象,并根據(jù)圖象寫(xiě)出當(dāng)輸出值y為正數(shù)時(shí)輸入值x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:解答題

(2004•連云港)如圖,直線(xiàn)y=kx+4與函數(shù)y=(x>0,m>0)的圖象交于A(yíng)、B兩點(diǎn),且與x、y軸分別交于C、D兩點(diǎn).
(1)若△COD的面積是△AOB的面積的倍,求k與m之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,是否存在k和m,使得以AB為直徑的圓經(jīng)過(guò)點(diǎn)P(2,0)?若存在,求出k和m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•連云港)如圖,直線(xiàn)y=kx+4與函數(shù)y=(x>0,m>0)的圖象交于A(yíng)、B兩點(diǎn),且與x、y軸分別交于C、D兩點(diǎn).
(1)若△COD的面積是△AOB的面積的倍,求k與m之間的函數(shù)關(guān)系式;
(2)在(1)的條件下,是否存在k和m,使得以AB為直徑的圓經(jīng)過(guò)點(diǎn)P(2,0)?若存在,求出k和m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•連云港)有一個(gè)運(yùn)算裝置,當(dāng)輸入值為x時(shí),其輸出值為y,且y是x的二次函數(shù),已知輸入值為-2,0,1時(shí),相應(yīng)的輸出值分別為5,-3,-4.
(1)求此二次函數(shù)的解析式;
(2)在所給的坐標(biāo)系中畫(huà)出這個(gè)二次函數(shù)的圖象,并根據(jù)圖象寫(xiě)出當(dāng)輸出值y為正數(shù)時(shí)輸入值x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《代數(shù)式》(01)(解析版) 題型:選擇題

(2004•連云港)某種商品進(jìn)價(jià)為a元,商店將價(jià)格提高30%作零售價(jià)銷(xiāo)售.在銷(xiāo)售旺季過(guò)后,商店又以8折(即售價(jià)的80%)的價(jià)格開(kāi)展促銷(xiāo)活動(dòng).這時(shí)一件該商品的售價(jià)為( )
A.a(chǎn)元
B.0.8a元
C.1.04a元
D.0.92a元

查看答案和解析>>

同步練習(xí)冊(cè)答案