(2013•欽州)已知⊙O1與⊙O2的半徑分別為2cm和3cm,若O1O2=5cm.則⊙O1與⊙O2的位置關(guān)系是( 。
分析:由⊙O1、⊙O2的半徑分別是2cm和3cm,若O1O2=5cm,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可得出⊙O1和⊙O2的位置關(guān)系.
解答:解:∵⊙O1、⊙O2的半徑分別是2cm和3cm,若O1O2=5cm,
又∵2+3=5,
∴⊙O1和⊙O2的位置關(guān)系是外切.
故選D.
點(diǎn)評(píng):此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.
圓和圓的位置與兩圓的圓心距、半徑的數(shù)量之間的關(guān)系:①兩圓外離?d>R+r;②兩圓外切?d=R+r;③兩圓相交?R-r<d<R+r(R≥r);④兩圓內(nèi)切?d=R-r(R>r);⑤兩圓內(nèi)含?d<R-r(R>r).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•欽州)甲、乙兩個(gè)工程隊(duì)共同承包某一城市美化工程,已知甲隊(duì)單獨(dú)完成這項(xiàng)工程需要30天,若由甲隊(duì)先做10天,剩下的工程由甲、乙兩隊(duì)合作8天完成.問乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?若設(shè)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要x天.則可列方程為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•欽州)如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測(cè)得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測(cè)得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1:
3
,AB=10米,AE=15米.(i=1:
3
是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點(diǎn)B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米.參考數(shù)據(jù):
2
1.414,
3
1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•欽州)如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點(diǎn),以O(shè)為圓心的半圓與AB邊相切于點(diǎn)D,與AC、BC邊分別交于點(diǎn)E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=
23

(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案