精英家教網 > 初中數學 > 題目詳情
在△ABC中,∠C=90°,∠A、∠B、∠C所對的邊分別為a、b、c.若∠B=60°,a+b=3+,求a、b、c及S△ABC
【答案】分析:根據∠B可以求得a、b的關系,根據a+b的值可以求a、b的值,根據a、b的值即可求△ABC的面積,已知a、b的值,根據勾股定理即可求c的值.
解答:解:∵∠B=60°,∴∠A=30°,
∴b=a,
∵a+b=3+,即a+b=(+1)a=3+
解得a=,
∴b=3,
∴c==2
S△ABC=ab=
點評:本題考查了勾股定理在直角三角形中的運用,考查了特殊角的三角函數值的計算,本題中根據a、b的關系式求得a、b的值是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、如圖,在△ABC中,CD⊥AB,垂足為D,點E在BC上,EF⊥AB,垂足為F.
(1)CD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠ACB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

在△ABC中,∠C=90°,∠A=30°,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE.
精英家教網
(1)如圖1.連接BE、CD,BE與CD交于點O,
①證明:DC=BE;
②∠BOC=
 
°. (直接填答案)
(2)如圖2,連接DE,交AB于點F.DF與EF相等嗎?證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

18、如圖,在△ABC中,邊AC的垂直平分線交BC于點D,交AC于點E、已知△ABC中與△ABD的周長分別為18cm和12cm,則線段AE的長等于
3
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

在△ABC中,∠C=90°,BC=12,AB=13,則tanA的值是( 。
A、
5
12
B、
12
5
C、
12
13
D、
5
13

查看答案和解析>>

科目:初中數學 來源: 題型:

在△ABC中,a=
2
,b=
6
,c=2
2
,則最大邊上的中線長為(  )
A、
2
B、
3
C、2
D、以上都不對

查看答案和解析>>

同步練習冊答案