已知:如圖,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求證:AF=CE.

證明:∵AD∥CB,
∴∠A=∠C,
在△ADF和△CBE中

∴△ADF≌△CBE(ASA)
∴AF=CE.
分析:先根據(jù)平行線的性質(zhì)由AD∥CB得到∠A=∠C,然后根據(jù)“ASA”判斷△ADF≌△CBE,再根據(jù)全等的性質(zhì)即可得到結(jié)論.
點評:本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應邊相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,∠PAC=30°,在射線AC上順次截取AD=3cm,DB=10cm,以DB為直徑作⊙O交射線AP于E、F兩點,求圓心O到AP的距離及EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、已知:如圖,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.
求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,C、F在BE上,∠A=∠D,AB∥DE,AB=DE.
求證:BF=EC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、已知:如圖,D、E在BC上,AB=AC,AD=AE.試說明線段BD與CE相等的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,E、F兩點在BC上,BE=CF,AB∥DE,AF∥CD
(1)求證:△ABF≌△DEC;
(2)已知中的圖是否為軸對稱圖形?
答:
(填:“是”或“否”)

查看答案和解析>>

同步練習冊答案