解:(1)如圖2:當(dāng)DE∥AB時,連接OD,
∵DE是⊙O的切線,
∴OD⊥DE,
∵DE∥AB,
∴OD⊥AB;
又∵OD=OA,
∴∠A=45°,
又∵BM⊥AB,
∴∠OBE=90°,
∴在Rt△ABC中,∠ACB=45°;
即:當(dāng)∠ACB=45°時,DE∥AB;
(本問證明的方法比較多,對于其它方法,只要是正確的,請參照給分)
(2)如圖1,連接BD,
∵AB是⊙O的直徑,
∴∠BDA=∠BDC=90°,
∴∠ACB+∠CBD=90°,
∠EDB+∠CDE=90°;
又∵BM⊥AB,AB是⊙O的直徑,
∴MB是⊙O的切線,
又∵DE是⊙O的切線,
∴∠CBD=∠EDB,
∴∠ACB=∠CDE,
∴EC=ED,
∴BE=EC;
(3)假設(shè)在線段CD上存在點(diǎn)G,使BC
2=4DG•DC,
由(2)知:BE=CE,
∴BC=2CE=2DE,
∴(2DE)
2=4 DG•DC,從而DE
2=DG•DC;
由于∠CDE是公共角,
∴△DEG∽△DCE,
∴∠ACB=∠DEG;
令∠ACB=x,∠DGE=y,
∴∠CDE=∠ACB=x,
∵C和B不重合,
∴BC>0,
∴D和G就不能夠重合,但是,G可以和C重合,
∴要使線段CD上的G點(diǎn)存在,則要滿足:2x+y=180°且y≥x,因此x≤60°,
∴0°<∠ACB≤60°時,滿足條件的G點(diǎn)存在.
分析:(1)連接圓心和切點(diǎn),可得到∠ODE=90°,那么可得∠AOD=90°,所以∠A=45°,進(jìn)而可求得∠ACB的度數(shù);
(2)證CE、DE是否相等,即求∠ECD和∠EDC是否相等;連接BD,由切線長定理知△EDB是等腰三角形,即∠EDB=∠EBD;在Rt△CDB中,可發(fā)現(xiàn)∠ECD和∠EDC是等角的余角,由此得證;
(3)由(2)的結(jié)論易知:DE是Rt△CDB斜邊上的中線,即BC=2DE,將此關(guān)系式代入所求證的結(jié)論中,可得DE
2=DG•DC;由此可證得△DEG∽△DCE,即∠DEG=∠ACB;進(jìn)而可根據(jù)∠DGE和∠ACB的大小關(guān)系以及三角形內(nèi)角和定理,求出∠ACB的取值范圍.
點(diǎn)評:本題考查的知識點(diǎn)有:切線的性質(zhì)、圓周角定理、相似三角形的判定和性質(zhì)、三角形內(nèi)角和定理等.綜合性強(qiáng),難度較大.