【題目】如圖,在菱形ABCD中,F為邊AB的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)G,過(guò)點(diǎn)GGE⊥AD于點(diǎn)E.AB=2,且∠1=∠2,則下列結(jié)論:①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四邊形BFOC=.其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】

根據(jù)“菱形的性質(zhì)、全等三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)和直角三角形的相關(guān)性質(zhì)”結(jié)合“已知條件”進(jìn)行分析解答即可.

(1)∵四邊形ABCD是菱形,

∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,

∵∠1=∠2,

∴∠GAD=∠2,

∴AG=GD,

∵GE⊥AD,
∴GE垂直平分AD,

∴AE=ED,

∵F為邊AB的中點(diǎn),

∴AF=AE,

在△AFG和△AEG中, ,

∴△AFG≌△AEG(SAS),

∴∠AFG=∠AEG=90°,

∴DF⊥AB,故結(jié)論①正確;
(2)如圖1,連接BDAC于點(diǎn)O,

∵DF⊥AB,F(xiàn)為邊AB的中點(diǎn),

∴AF=AB=1,AD=BD,

菱形ABCD中,AB=AD,

∴AD=BD=AB,

∴△ABD為等邊三角形,

∴∠BAD=∠BCD=60°,

∴∠BAC=∠1=∠2=30°,

∴AC=2AO=2ABcos∠BAC=2×2×,AG=

∴CG=AC-AG=,

∴CG=2GA,中結(jié)論正確;

(3)∵GE垂直平分AD,

∴ED=AD=1,

∴GE=tan∠2ED=tan30°×1=,

Rt△ADF中,AD=2,AF=1,

∴DF=,

∴DF+GE=

∵CG=,

∴CG=DF+GE,故中結(jié)論正確;

(4)∵Rt△AOB中,∠BAC=30°,∠BOA=90°,AB=2,

∴BO=AB=1,

Rt△AFG中,∠FAG=30°,∠GFA=90°,

∴FG=AF·tan30°=

∴S四邊形BFGC=SABC-SAGF

=AC·OB-AF·FG

=

=.

∴④中結(jié)論不正確;

綜上所述,上述4個(gè)結(jié)論中正確的有3個(gè).
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是用長(zhǎng)度相等的小棒按一定規(guī)律擺成的一組圖案

1)填寫下表:

圖形序號(hào)

……

每個(gè)圖案中小棒的數(shù)量

6

11

……

2)請(qǐng)?zhí)顚懗龅?/span>個(gè)圖案中小棒的數(shù)量(用含的代數(shù)式表示);

3)第30個(gè)圖案中小棒有多少根?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在ABC中,∠BAC的平分線ADBC于點(diǎn)D,DE垂直平分AC,垂足為點(diǎn)E,BAD=29°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有330臺(tái)機(jī)器需要一次性運(yùn)送到某地,計(jì)劃租用甲、乙兩種貨車共8輛來(lái)完成此項(xiàng)任務(wù). 已知每輛甲種貨車一次最多運(yùn)送機(jī)器45臺(tái)、租車費(fèi)用400元,每輛乙種貨車一次最多運(yùn)送機(jī)器30臺(tái)租車費(fèi)用280元. 設(shè)租用甲種貨車輛(為正整數(shù))

(1)請(qǐng)用含的代數(shù)式表示租車費(fèi)用;

(2)存在能完成此項(xiàng)運(yùn)送任務(wù)的最節(jié)省費(fèi)用的租車方案嗎?若存在,請(qǐng)計(jì)算并給出租車方案;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8…頂點(diǎn)依次用A1,A2,A3,A4,表示,則頂點(diǎn)A2019的坐標(biāo)是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象過(guò)Rt△ABO斜邊OB的中點(diǎn)D,與直角邊AB相交于點(diǎn)C,連接AD,OC.若△ABO的周長(zhǎng)為,AD=2,則△ACO的面積為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某烤鴨店在確定烤鴨的烤制時(shí)間時(shí),主要依據(jù)的是下表的數(shù)據(jù):

鴨的質(zhì)量/千克

0.5

1

1.5

2

2.5

3

3.5

4

烤制時(shí)間/

40

60

80

100

120

140

160

180

設(shè)鴨的質(zhì)量為x千克,烤制時(shí)間為t,估計(jì)當(dāng)x=2.8千克時(shí),t的值為(

A. 128B. 132C. 136D. 140

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校運(yùn)動(dòng)會(huì)需購(gòu)買AB兩種獎(jiǎng)品共100、B兩種獎(jiǎng)品單價(jià)分別為10元、15設(shè)購(gòu)買A種獎(jiǎng)品m件,購(gòu)買兩種獎(jiǎng)品的總費(fèi)用為W元.

寫出之間的函數(shù)關(guān)系式;

若購(gòu)買兩種獎(jiǎng)品的總費(fèi)用不超過(guò)1150元,且A種獎(jiǎng)品的數(shù)量不大于B種獎(jiǎng)品數(shù)量的3倍,求出自變量m的取值范圍,并確定最少費(fèi)用W的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)認(rèn)真觀察圖形,解答下列問(wèn)題:

1)根據(jù)圖1中條件,試用兩種不同方法表示兩個(gè)陰影圖形的面積的和.

方法1______;

方法2______

2)從中你能發(fā)現(xiàn)什么結(jié)論?請(qǐng)用等式表示出來(lái):______;

3)利用(2)中結(jié)論解決下面的問(wèn)題:

如圖2,兩個(gè)正方形邊長(zhǎng)分別為a、b,如果a+b=ab=4,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案