正方形ABCD邊長為4,點(diǎn)E是邊AB上的動(dòng)點(diǎn)(點(diǎn)E不與A、B重合),線段DE的垂直平分線和邊AD、BC分別交于點(diǎn)F、G,和DE交于點(diǎn)H.
(1)直接寫出∠GFD的范圍(用不等式表示,不必說明理由);
(2)求證:FG=DE;
(3)設(shè)AE=x,四邊形AFGB的面積為y,當(dāng)x為多少時(shí),y的值最大?此時(shí)y的最大值是多少?

【答案】分析:(1)當(dāng)點(diǎn)E在A處時(shí),AD與ED重合,F(xiàn)G垂直平分ED,就有∠GFD=90°,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),F(xiàn)G垂直平分ED,根據(jù)正方形的性質(zhì)可以得出∠GFD=∠CAD=45°,從而可以得出結(jié)論;
(2)過點(diǎn)F作FN⊥BC于N,可以得出四邊形ABNF是矩形,就有FN=AB=AD,進(jìn)而得出∠AED=∠BGF,再通過證明△AED≌△NGF就可以得出結(jié)論;
(3)連接EF,設(shè)AF=a,那么EF=DF=4-a,在Rt△AEF中,AE2+AF2=EF2,即:a2+x2=(4-a)2,就可以求出a=,再根據(jù)梯形的面積公式就可以表示出y的關(guān)系式,從而可以求出結(jié)論.
解答:解:(1)當(dāng)點(diǎn)E在A處時(shí),AD與ED重合,F(xiàn)G垂直平分ED,就有∠GFD=90°,
當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),ED與BD重合,F(xiàn)G垂直平分ED,就是FG垂直平分BD,
則∠GFD=∠CAD=45°,
∵點(diǎn)E不與A、B重合,
∴45°<∠GFD<90°;

(2)過點(diǎn)F作FN⊥BC于N,
則∠BNF=∠FNG=90°.
∵四邊形ABCD是正方形,
∴∠A=∠B=90°,AB=BC=CD=AD.
∴四邊形ABNF是矩形,
∴FN=AB=AD,
∵ED⊥FG,
∴∠EHG=90°,
∴∠EHG+∠B=180°.
∵四邊形BEHG的內(nèi)角和是360°,
∴∠BED+∠BGH=180°.
∵∠AED+∠BED=180°,
∴∠AED=∠BGF,
∵∠A=∠FNG=90°.
∵在△AED和△NGF中,
,
∴△AED≌△NGF(AAS),
∴DE=FG,AE=NG;

(3)如圖,連接EF,設(shè)AF=a,
∴FD=4-a.
∵FG垂直平分ED,
∴EF=FD,
∴EF=4-a.
在Rt△AEF中,由勾股定理,得
AE2+AF2=EF2
∴a2+x2=(4-a)2,
∴a=
∵AF≤BG,即點(diǎn)N在線段BG上,且AE=x,
∴BG=BN+GN=x+,
∴y=(AF+BG)×AB=2(+x+),
=-x2+2x+8,
=-(x-2)2+10(0<x<4).
∴當(dāng)x=2時(shí),y有最大值,最大值是10.
點(diǎn)評:本題是一道相似形的綜合試題,考查了全等三角形的判定及性質(zhì)的運(yùn)用,中垂線的性質(zhì)的運(yùn)用,梯形的面積公式的運(yùn)用,二次函數(shù)的性質(zhì)的運(yùn)用,解答本題作輔助線證明三角形全等是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)正方形ABCD邊長為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直.
(1)證明:Rt△ABM∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形ABCN的面積最大,并求出最大面積;
(3)當(dāng)M點(diǎn)運(yùn)動(dòng)到什么位置時(shí)Rt△ABM∽Rt△AMN,求此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方形ABCD邊長為2cm,以點(diǎn)B為圓心,AB的長為半徑作弧
AC
,則圖中陰影部分的面積為( 。
A、(4-π)cm2
B、(8-π)cm2
C、(2π-4)cm2
D、(π-2)cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,正方形ABCD邊長為2,點(diǎn)E在CB的延長線上,BD=BE,則tan∠BAE的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:正方形ABCD邊長為4cm,E,F(xiàn)分別為CD,BC的中點(diǎn),動(dòng)點(diǎn)P在線段AB上從B?A以2cm/精英家教網(wǎng)s的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q在線段FC上從F?C以1cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)G在PC上,且∠EGC=∠EQC,連接PD.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求證:△CQE∽△APD;
(2)問:在運(yùn)動(dòng)過程中CG•CP的值是否發(fā)生改變?如果不變,請求這個(gè)值;若改變,請說明理由;
(3)當(dāng)t為何值時(shí),△CGE為等腰三角形并求出此時(shí)△CGE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形ABCD邊長為4,M、N分別是BC、CD上的兩個(gè)動(dòng)點(diǎn),當(dāng)M點(diǎn)在BC上運(yùn)動(dòng)時(shí),保持AM和MN垂直,
(1)證明:Rt△ABM∽Rt△MCN;
(2)設(shè)BM=x,梯形ABCN的面積為y,求y與x之間的函數(shù)關(guān)系式;
(3)梯形ABCN的面積是否可能等于11?為什么?

查看答案和解析>>

同步練習(xí)冊答案