己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側),點A、點B的橫坐標是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標.
(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標.
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設Q點坐標(m,0),當△CDQ面積S最大時,求m的值.

【答案】分析:(1)解一元二次方程x2-4x-12=0可求A、B兩點坐標;
(2)將A、B兩點坐標代入二次函數(shù)y=ax2+bx+6,可求二次函數(shù)解析式,配方為頂點式,可求對稱軸及頂點坐標;
(3)作點C關于拋物線對稱軸的對稱點C′,連接AC′,交拋物線對稱軸于P點,連接CP,P點即為所求;
(4)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面積,利用三角形面積公式表示△ACQ的面積,根據(jù)S△CDQ=S△ABC-S△BDQ-S△ACQ,運用二次函數(shù)的性質求面積最大時,m的值.
解答:解:(1)A(-2,0),B(6,0);

(2)將A、B兩點坐標代入二次函數(shù)y=ax2+bx+6,得
,
解得,
∴y=-x2+2x+6,
∵y=-(x-2)2+8,
∴拋物線對稱軸為x=2,頂點坐標為(2,8);

(3)如圖,作點C關于拋物線對稱軸的對稱點C′,連接AC′,交拋物線對稱軸于P點,連接CP,
∵C(0,6),
∴C′(4,6),設直線AC′解析式為y=ax+b,則
,
解得,
∴y=x+2,當x=2時,y=4,
即P(2,4);

(4)依題意,得AB=8,QB=6-m,AQ=m+2,OC=6,則S△ABC=AB×OC=24,
∵由DQ∥AC,∴△BDQ∽△BCA,
=(2=(2,
即S△BDQ=(m-6)2
又S△ACQ=AQ×OC=3m+6,
∴S=S△ABC-S△BDQ-S△ACQ=24-(m-6)2-(3m+6)=-m2+m+=-(m-2)2+6,
∴當m=2時,S最大.
點評:本題考查了二次函數(shù)的綜合運用.關鍵是根據(jù)已知條件求拋物線解析式,根據(jù)拋物線的對稱性,相似三角形的知識解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側),點A、點B的橫坐標是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標.
(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標.
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設Q點坐標(m,0),當△CDQ面積S最大時,求m的值.
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源:2011年遼寧省丹東市中考數(shù)學試卷 題型:044

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側),點A、點B的橫坐標是一元二次方程x2-4x-12=0的兩個根.

(1)請直接寫出點A、點B的坐標.

(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標.

(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.

(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設Q點坐標(m,0),當△CDQ面積S最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年重慶市中考數(shù)學預測試卷(四)(解析版) 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側),點A、點B的橫坐標是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標.
(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標.
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設Q點坐標(m,0),當△CDQ面積S最大時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年遼寧省鞍山市立山區(qū)中考數(shù)學模擬試卷(五)(解析版) 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(點A在點B的左側),點A、點B的橫坐標是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點A、點B的坐標.
(2)請求出該二次函數(shù)表達式及對稱軸和頂點坐標.
(3)如圖1,在二次函數(shù)對稱軸上是否存在點P,使△APC的周長最小,若存在,請求出點P的坐標;若不存在,請說明理由.
(4)如圖2,連接AC、BC,點Q是線段0B上一個動點(點Q不與點0、B重合).過點Q作QD∥AC交BC于點D,設Q點坐標(m,0),當△CDQ面積S最大時,求m的值.

查看答案和解析>>

同步練習冊答案