(2010•來(lái)賓)已知⊙O1與⊙O2相切,⊙O1的半徑為4,圓心距為10,則⊙O2的半徑是( 。
分析:⊙O1和⊙O2相切,有兩種情況需要考慮:內(nèi)切和外切.內(nèi)切時(shí),⊙O2的半徑=圓心距+⊙O1的半徑;外切時(shí),⊙O2的半徑=圓心距-⊙O1的半徑.
解答:解:當(dāng)⊙O1和⊙O2內(nèi)切時(shí),⊙O2的半徑為10+4=1c4m;
當(dāng)⊙O1和⊙O2外切時(shí),⊙O2的半徑為10-4=6cm;
故⊙O2的半徑為6或14cm,
故選C.
點(diǎn)評(píng):主要是考查兩圓相切與數(shù)量關(guān)系間的聯(lián)系,一定要考慮兩種情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知|x|=2,則x=
±2
±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知在Rt△ABC中,∠C=90°,點(diǎn)E在邊AB上,且AE=AC,∠BAC的平分線AD與BC交于點(diǎn)D.
(1)根據(jù)上述條件,用尺規(guī)在圖中作出點(diǎn)E和∠BAC的平分線AD(不要求寫(xiě)出作法,但要保留作圖痕跡);
(2)證明:DE⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知反比例函數(shù)的圖象過(guò)點(diǎn)(-2,-2).
(1)求此反比例函數(shù)的關(guān)系式;
(2)過(guò)點(diǎn)M(4,4)分別作x、y軸的垂線,垂足分別為A、B,這兩條垂線與x、y軸圍成一個(gè)正方形OAMB(如圖),用列表法寫(xiě)出在這個(gè)正方形內(nèi)(包括正方形的邊和內(nèi)部)且位于第一象限,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)的坐標(biāo);并求在這些點(diǎn)中任取一點(diǎn),該點(diǎn)恰好在所求反比例函數(shù)圖象上的概率P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•來(lái)賓)已知矩形OABC的頂點(diǎn)O在平面直角坐標(biāo)系的原點(diǎn),邊OA、OC分別在x、y軸的正半軸上,且OA=3cm,OC=4cm,點(diǎn)M從點(diǎn)A出發(fā)沿AB向終點(diǎn)B運(yùn)動(dòng),點(diǎn)N從點(diǎn)C出發(fā)沿CA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)M、N同時(shí)出發(fā),且運(yùn)動(dòng)的速度均為1cm/秒,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)即停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)試用t表示點(diǎn)N的坐標(biāo),并指出t的取值范圍;
(2)試求出多邊形OAMN的面積S與t的函數(shù)關(guān)系式;
(3)是否存在某個(gè)時(shí)刻t,使得點(diǎn)O、N、M三點(diǎn)同在一條直線上?若存在,則求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案