如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長(zhǎng)MP交CN于點(diǎn)E(如圖2).
①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說明理由.
作業(yè)寶作業(yè)寶

(1)證明:①如圖2:
∵BM⊥直線a于點(diǎn)M,CN⊥直線a于點(diǎn)N,
∴∠BMA=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠ECP,
又∵P為BC邊中點(diǎn),
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,
②∵△BPM≌△CPE,
∴PM=PE∴PM=ME,
∴在Rt△MNE中,PN=ME,
∴PM=PN.

(2)解:成立,如圖3.
證明:延長(zhǎng)MP與NC的延長(zhǎng)線相交于點(diǎn)E,
∵BM⊥直線a于點(diǎn)M,CN⊥直線a于點(diǎn)N,
∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,
∴BM∥CN∴∠MBP=∠ECP,
又∵P為BC中點(diǎn),
∴BP=CP,
又∵∠BPM=∠CPE,
在△BPM和△CPE中,
,
∴△BPM≌△CPE,
∴PM=PE,
∴PM=ME,
則Rt△MNE中,PN=ME,
∴PM=PN.

(3)解:如圖4,
四邊形M′BCN′是矩形,
根據(jù)矩形的性質(zhì)和P為BC邊中點(diǎn),得到△M′BP≌△N′CP,
得PM′=PN′成立.即“四邊形MBCN是矩形,則PM=PN成立”.
分析:(1)①根據(jù)平行線的性質(zhì)證得∠MBP=∠ECP再根據(jù)BP=CP,∠BPM=∠CPE即可得到;
②由△BPM≌△CPE,得到PM=PE則PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN.
(2)證明方法與②相同.
(3)四邊形MBCN是矩形,則PM=PN成立.
點(diǎn)評(píng):本題考查旋轉(zhuǎn)的性質(zhì).旋轉(zhuǎn)變化前后,對(duì)應(yīng)線段、對(duì)應(yīng)角分別相等,圖形的大小、形狀都不改變.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2

(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問題:
(1)寫出一個(gè)你所學(xué)過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案