1.第Ⅱ卷共6頁.用鋼筆或圓珠筆直接答在試題卷上.不要在答題卡上填涂. 查看更多

 

題目列表(包括答案和解析)

(14分)已知函數(shù)f(x)=在定義域內(nèi)為奇函數(shù),

且f(1)=2,f()=;

(1)確定函數(shù)的解析式;

(2)用定義證明f(x)在[1,+∞)上是增函數(shù);

第6頁(共6頁)

 
(3)解不等式f(t2+1)+f(-3+3t-2t2)<0.

查看答案和解析>>

 設(shè)函數(shù).

      (Ⅰ)求的單調(diào)區(qū)間和極值;

(Ⅱ)是否存在實數(shù),使得關(guān)于的不等式的解集為?若存在,求的取值范圍;若不存在,試說明理由.

 

 

 

 

 

 

第5頁(共6頁)

 
 

 

查看答案和解析>>

   如圖,在底面為直角梯形的四棱錐平面,,

⑴求證:;

⑵求直線與平面所成的角;

⑶設(shè)點在棱上,

∥平面,求的值.

 

 

第4頁(共6頁)

 
 

 

查看答案和解析>>

 如圖,已知平面平面,、是平面與平面

交線上的兩個定點,,且,

,,在平面上有一個動點,

使得,則的面積的最大值是(    ) 

第2頁(共6頁)

 
 A      B      C       D  24

 

查看答案和解析>>

 等差數(shù)列{}前n項和為,滿足,則下列結(jié)論中正確的是(     )

第1頁(共6頁)

 
A、中的最大值      B、中的最小值      C、=0       D、=0

 

查看答案和解析>>

CBACA;DCADC;DB

30;9,27;1;

17. 解:易得                                            ………… 3分

當a=1時, B=,滿足;                           ………… 5分

時,B={x|2a<x<a2+1},要使即BA,

必須,解之得                               ………… 8分

綜上可知,存在這樣的實數(shù)a滿足題設(shè)成立.       ………… 10分

18. 解: (1) 圖2是由四塊圖1所示地磚繞點按順時針旋轉(zhuǎn)后得到,△為等腰直角三角形,     四邊形是正方形.                                  …… 4分

(2) 設(shè),則,每塊地磚的費用為,制成△、△和四邊形三種材料的每平方米價格依次為3a、2a、a (元),                          …… 6分

       

                                                

    .                                …… 10分

    由,當時,有最小值,即總費用為最省. 

    答:當米時,總費用最省.                             …… 12分

 

19. 解:(Ⅰ)易得,的解集為,恒成立.解得.………………… 3分

因此的對稱軸, 故函數(shù)在區(qū)間上不單調(diào),從而不存在反函數(shù)。                                                ……………………… 5分

(Ⅱ)由已知可得,則

,

.                          ………………………7分

①     若,則上單調(diào)遞增,在上無極值;

②     若,則當時,;當時,.

時,有極小值在區(qū)間上存在極小值,.

③     若,則當時,;當時,.

*時,有極小值.

在區(qū)間上存在極小值 .……………… 10分

綜上所述:當時,在區(qū)間上存在極小值! 12分

20. 解:(Ⅰ)當時,

,即數(shù)列的通項公式為       …… 4分

 (Ⅱ)當時,

               

                                …… 8分

由此可知,數(shù)列的前n項和                  …… 12分

21. 解:(Ⅰ).                          …… 4分

(Ⅱ)易得的值域為A=,設(shè)函數(shù)的值域B,若對于任意總存在,使得成立,只需。               …… 6分

顯然當時,,不合題意;

時,,故應有,解之得: ;…… 8分

時,,故應有,解之得:! 10分

綜上所述,實數(shù)的取值范圍為。               …… 12分

22. 解:(Ⅰ).

                                                                …… 3分

  (Ⅱ) …… 6分

  ,

 由錯位相減法得:

    

所以:。   …… 8分

  (Ⅲ)

為遞增數(shù)列 。

 中最小項為     …… 12分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


同步練習冊答案