先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問題.
1
1×2
=1-
1
2
;   
1
2×3
=
1
2
-
1
3
;   
1
3×4
=
1
3
-
1
4

將以上三個等式兩邊分別相加得:
1
1×2
+
1
2×3
+
1
3×4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)計算
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=
9
10
9
10
;
(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
n
n+1
n
n+1
;(用含有n的式子表示)
(3)探究并計算:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2007×2009
分析:(1)根據(jù)題干的規(guī)律,分別將每一個式子寫成兩個分?jǐn)?shù)差的形式,再計算;
(2)根據(jù)題干的規(guī)律,分別將每一個式子寫成兩個分?jǐn)?shù)差的形式,再計算;
(3)先提
1
2
出來,然后和前面的運算方法一樣.
解答:解:(1)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
9
-
1
10

=1-
1
10

=
9
10
;

(2)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1


(3)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
2007×2009

=
1
2
×(1-
1
3
+
1
3
-
1
5
+…+
1
2007
-
1
2009

=
1
2
×(1-
1
2009

=
1
2
×
2008
2009

=
1004
2009

故答案為:
9
10
;
n
n+1
點評:本題考查了關(guān)于數(shù)字變化的規(guī)律:通過觀察數(shù)字之間的變化規(guī)律,得到一般性的結(jié)論,再利用此結(jié)論解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問題.
1
1×2
=1-
1
2

1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

┅┅
(1)計算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
;(用含有n的式子表示)
(3)若
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)
的值為
17
35
,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問題.
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4
,┅┅
(1)根據(jù)你發(fā)現(xiàn)的規(guī)律寫出第5個等式:
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=
 
.(用含有n的式子表示)
(3)計算:
1
1×3
+
1
3×5
+
1
5×7
+
┅┅+
1
2007×2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問題:
1
1×2
=
1
2
=
1
1
-
1
2
,
1
2×3
=
1
6
=
1
2
-
1
3
,
1
3×4
=
1
12
=
1
3
-
1
4

(1)計算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+
1
6×7
+
1
7×8
=
 
(n為正整數(shù));
(2)化簡:
1
x(x+1)
+
1
(x+1)(x+2)
+
1
(x+2)(x+3)
+…+
1
(x+2008)(x+2009)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下列問題.
1
1×2
=1-
1
2
,=
1
2
-
1
3
,
1
3×4
=
1
3
-
1
4

(1)計算
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
=
 

(2)探究
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
 
.(用含有n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先觀察下列等式,然后用你發(fā)現(xiàn)的規(guī)律解答下面問題
 
1
1×2
=1-
1
2
    
1
2×3
=
1
2
-
1
3
     
1
3×4
=
1
3
-
1
4

(1)填空 
1
1×2
+
1
2×3
+
1
3×4
+…+
1
9×10
=
9
10
9
10
;
(2)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
(n-1)n

(3)如果將問題改為如下形式,你還會計算嗎?
1
1×5
+
1
5×9
+
1
9×13

(4)解方程
x
1×5
+
x
5×9
+
x
9×13
+…+
x
2009×2013
=503.

查看答案和解析>>

同步練習(xí)冊答案