(2009•資陽(yáng))如圖,已知拋物線y=x2-2x+1的頂點(diǎn)為P,A為拋物線與y軸的交點(diǎn),過(guò)A與y軸垂直的直線與拋物線的另一交點(diǎn)為B,與拋物線對(duì)稱(chēng)軸交于點(diǎn)O′,過(guò)點(diǎn)B和P的直線l交y軸于點(diǎn)C,連接O′C,將△ACO′沿O′C翻折后,點(diǎn)A落在點(diǎn)D的位置.
(1)求直線l的函數(shù)解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在點(diǎn)Q,使得S△DQC=S△DPB?若存在,求出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)題意,可以求得點(diǎn)P,A,B,O′的坐標(biāo),因?yàn)橹本l過(guò)點(diǎn)B,P,所以利用待定系數(shù)法即可求得;
(2)根據(jù)(1)的結(jié)果可求得點(diǎn)C的坐標(biāo),根據(jù)折疊的知識(shí)可得:∠CDO′=∠CAO′=90°,O′C是AD的垂直平分線,連接AD,作DF⊥AB于點(diǎn)F,利用相似三角形與直角三角形的性質(zhì)即可求得;
(3)顯然,O′P∥AC,且O′為AB的中點(diǎn),
∴點(diǎn)P是線段BC的中點(diǎn),∴S△DPC=S△DPB
故要使S△DQC=S△DPB,只需S△DQC=S△DPC.(7分)
過(guò)P作直線m與CD平行,則直線m上的任意一點(diǎn)與CD構(gòu)成的三角形的面積都等于S△DPC,
故m與拋物線的交點(diǎn)即符合條件的Q點(diǎn).
據(jù)直線m的作法,可以求得直線m的解析式為y=x-.根據(jù)題意還可求得,拋物線上存在兩點(diǎn)Q1(2,-1)(即點(diǎn)P)和Q2,),使得S△DQC=S△DPB
解答:解:(1)配方,得y=(x-2)2-1,
∴拋物線的對(duì)稱(chēng)軸為直線x=2,頂點(diǎn)為P(2,-1).(1分)
取x=0代入y=x2-2x+1,
得y=1,
∴點(diǎn)A的坐標(biāo)是(0,1).
由拋物線的對(duì)稱(chēng)性知,點(diǎn)A(0,1)與點(diǎn)B關(guān)于直線x=2對(duì)稱(chēng),
∴點(diǎn)B的坐標(biāo)是(4,1).(2分)
設(shè)直線l的解析式為y=kx+b(k≠0),將B、P的坐標(biāo)代入,
,
解得
∴直線l的解析式為y=x-3.(3分)

(2)連接AD交O′C于點(diǎn)E,
∵點(diǎn)D由點(diǎn)A沿O′C翻折后得到,
∴O′C垂直平分AD.
由(1)知,點(diǎn)C的坐標(biāo)為(0,-3),
∴在Rt△AO′C中,O′A=2,AC=4,
∴O′C=2
據(jù)面積關(guān)系,有×O′C×AE=×O′A×CA,
∴AE=,AD=2AE=
作DF⊥AB于F,易證Rt△ADF∽R(shí)t△CO′A,
,
∴AF=•AC=,DF=•O′A=,(5分)
又∵OA=1,
∴點(diǎn)D的縱坐標(biāo)為1-=-,
∴點(diǎn)D的坐標(biāo)為(,-).(6分)

(3)顯然,O′P∥AC,且O′為AB的中點(diǎn),
∴點(diǎn)P是線段BC的中點(diǎn),
∴S△DPC=S△DPB
故要使S△DQC=S△DPB,只需S△DQC=S△DPC.(7分)
過(guò)P作直線m與CD平行,則直線m上的任意一點(diǎn)與CD構(gòu)成的三角形的面積都等于S△DPC,
故m與拋物線的交點(diǎn)即符合條件的Q點(diǎn).
容易求得過(guò)點(diǎn)C(0,-3)、D(,-)的直線的解析式為y=x-3,
據(jù)直線m的作法,可以求得直線m的解析式為y=x-
x2-2x+1=x-,
解得x1=2,x2=
代入y=x-,得y1=-1,y2=,
因此,拋物線上存在兩點(diǎn)Q1(2,-1)(即點(diǎn)P)和Q2,),使得S△DQC=S△DPB.(9分)
(僅求出一個(gè)符合條件的點(diǎn)Q的坐標(biāo),扣1分)
點(diǎn)評(píng):此題屬于中考中的壓軸題,難度較大,知識(shí)點(diǎn)考查的較多而且聯(lián)系密切,需要學(xué)生認(rèn)真審題.
此題考查了二次函數(shù)與一次函數(shù),折疊問(wèn)題的綜合應(yīng)用,解題的關(guān)鍵是要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2009•資陽(yáng))如圖,已知拋物線y=x2-2x+1的頂點(diǎn)為P,A為拋物線與y軸的交點(diǎn),過(guò)A與y軸垂直的直線與拋物線的另一交點(diǎn)為B,與拋物線對(duì)稱(chēng)軸交于點(diǎn)O′,過(guò)點(diǎn)B和P的直線l交y軸于點(diǎn)C,連接O′C,將△ACO′沿O′C翻折后,點(diǎn)A落在點(diǎn)D的位置.
(1)求直線l的函數(shù)解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在點(diǎn)Q,使得S△DQC=S△DPB?若存在,求出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•資陽(yáng))如圖,已知拋物線y=x2-2x+1的頂點(diǎn)為P,A為拋物線與y軸的交點(diǎn),過(guò)A與y軸垂直的直線與拋物線的另一交點(diǎn)為B,與拋物線對(duì)稱(chēng)軸交于點(diǎn)O′,過(guò)點(diǎn)B和P的直線l交y軸于點(diǎn)C,連接O′C,將△ACO′沿O′C翻折后,點(diǎn)A落在點(diǎn)D的位置.
(1)求直線l的函數(shù)解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)拋物線上是否存在點(diǎn)Q,使得S△DQC=S△DPB?若存在,求出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2009•資陽(yáng))如圖,已知直線AD,BC交于點(diǎn)E,且AE=BE,欲證明△AEC≌△BED,需增加的條件可以是    (只填一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•資陽(yáng))如圖,已知Rt△ABC的直角邊AC=24,斜邊AB=25,一個(gè)以點(diǎn)P為圓心、半徑為1的圓在△ABC內(nèi)部沿順時(shí)針?lè)较驖L動(dòng),且運(yùn)動(dòng)過(guò)程中⊙P一直保持與△ABC的邊相切,當(dāng)點(diǎn)P第一次回到它的初始位置時(shí)所經(jīng)過(guò)路徑的長(zhǎng)度是( )

A.
B.25
C.
D.56

查看答案和解析>>

同步練習(xí)冊(cè)答案