在圖1、圖2中,線段AC=CE,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是線段CE的中點(diǎn).四邊形BCGF和CDHN都是正方形.AE的中點(diǎn)是M.
如圖1,點(diǎn)E在AC的延長(zhǎng)線上,點(diǎn)N與點(diǎn)G重合時(shí),點(diǎn)M與點(diǎn)C重合,容易證明FM = MH,FM⊥HM;現(xiàn)將圖1中的CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖2,判斷△FMH的形狀,并證明你的結(jié)論.
解:△FMH是等腰直角三角形. ………………………….1’
證明:連接MB、MD,如圖2,設(shè)FM與AC交于點(diǎn)P.
∵B、D、M分別是AC、CE、AE的中點(diǎn),
∴MD∥BC,且MD =BC = BF;
MB∥CD,且MB=CD=DH. …………….2’
∴四邊形BCDM是平行四邊形.
∴ ∠CBM =∠CDM.
又∵∠FBP =∠HDC,
∴∠FBM =∠MDH.
∴△FBM ≌ △MDH. ………………………….………4’
∴FM = MH,且∠MFB =∠HMD.
∴∠FMH =∠FMD-∠HMD =∠APM-∠MFB =∠FBP = 90°.
∴△FMH是等腰直角三角形. …………………. ………………….6
解析:略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年北京市九年級(jí)上學(xué)期期中測(cè)試數(shù)學(xué)卷 題型:解答題
在圖1、圖2中,線段AC=CE,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是線段CE的中點(diǎn).四邊形BCGF和CDHN都是正方形.AE的中點(diǎn)是M.
如圖1,點(diǎn)E在AC的延長(zhǎng)線上,點(diǎn)N與點(diǎn)G重合時(shí),點(diǎn)M與點(diǎn)C重合,容易證明FM = MH,FM⊥HM;現(xiàn)將圖1中的CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖2,判斷△FMH的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖(1),小明將一張矩形紙片沿對(duì)角線剪開,得到兩張三角形紙片(如圖(2)),量得他們的斜邊長(zhǎng)為10cm,較小銳角為30°,再將這兩張三角紙片擺成如圖(3)的形狀,但點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合(在圖(3)至圖(6)中統(tǒng)一用F表示)
小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了三個(gè)問題,請(qǐng)你幫助解決。
(1)將圖(3)中△ABF沿BD向右平移到圖(4)的位置,使點(diǎn)B與點(diǎn)F重合,請(qǐng)你求出平移的距離;
(2)將圖(3)中△ABF繞點(diǎn)F順時(shí)針方向旋轉(zhuǎn)30°到圖(5)的位置,A1F交DE于點(diǎn)G,請(qǐng)你求出線段FG的長(zhǎng)度;
(3)將圖(3)中的△ABF沿直線AF翻折到圖(6)的位置,AB1交DE丁點(diǎn)H,請(qǐng)證明:AH=DH。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com