解答:解:(1)∵OA=BC=20cm,
∴A的坐標(biāo)是(20,0),
當(dāng)t=7cm時,BQ=2×7-10=4cm,則CQ=20-4=16cm,
則Q的坐標(biāo)是:(16,10).
設(shè)過O、A、Q三點的拋物線解析式是:y=ax
2+bx+c,
根據(jù)題意得:
| c=0 | 400a+20b+c=0 | 256a+16b+c=10 |
| |
,
解得:
則函數(shù)的解析式是:y=-
x
2+
x;
(2)當(dāng)P、Q分別在AB邊和BC邊上運動時,BP=10-t,BQ=2t-10,
當(dāng)BP=2BQ時,10-t=2(2t-10),解得:t=6;
當(dāng)BQ=2BP時,2t-10=2(10-t)時,解得:t=7.5,
故當(dāng)t=6t或7.5t時,兩個三角形相似;
(3)當(dāng)t≤5時,P,Q都在AB上,AP=t,AQ=2t,則PQ=2t-t=t,則S=
×t×20=10t;
當(dāng)5<t<10時,P在AB上,Q在BC上,BP=10-t,BQ=2t-10,S=S
△OBQ+S
△OBP-S
△BPQ=
×20(10-t)+
×10(2t-10)-
(10-t)(2t-10)=t
2-15t+100;
當(dāng)10≤t≤15時,P,Q都在BC上,BP=t-10,BQ=2t-10,則PQ=(2t-10)-(t-10)=t,則S=
×10t=5t;
當(dāng)15<t<20時,P在BC上,Q在OC上,CP=30-t,OQ=40-2t,則S=
(40-2t)(30-t)=t
2-50t+600;
當(dāng)20≤t≤30時,P在BC上,Q在OA上,CP=30-t,OQ=2t-40,則S=
×10(2t-40)=10(t-20)=10t-200.
(4)當(dāng)5<t<10時,P在AB上,Q在BC上時,PQ⊥BO時,有BP=2BQ時,10-t=2(2t-10),解得:t=6;
當(dāng)20≤t≤30時,P在BC上,Q在OA上,CP=30-t,OQ=2t-40,PQ⊥BO時,有
=-2,解得:t=25,
故當(dāng)t=6cm或25cm時,PQ⊥BO.